メディア処理基礎 / Fundamentals of Media Processing Fundamentals of Signal Processing Part 2

小山 翔一 / Shoichi Koyama 国立情報学研究所 / 総合研究大学院大学 准教授 Associate Professor, National Institute of Informatics / SOKENDAI

What is Signal Processing?

Techniques for analyzing, modifying, and synthesizing signals, such as sound, images, and others

See also https://youtu.be/R90ciUoxcJU

From deterministic to statistical signal processing

- > A signal is considered to be deterministic in the classical signal processing
- In statistical signal processing, the observed signal is considered to be a stochastic process, i.e., random signal

Gain insight into statistical property of signals

From deterministic to statistical signal processing

Basic concept of statistical inference

Estimating some amounts of statistics of population (e.g., population average/variance) from observed samples

BASICS OF STATISTICS/STOCHASTIC PROCESS

Probability density function

> Random variable X taking continuous value holds

$$P(a \le X \le b) = \int_{a}^{b} f(x) \mathrm{d}x$$

Probability that random variable X takes the value of [a,b]

 $\succ f(x)$ is called probability density function (or p.d.f.) of X satisfying

$$f(x) \ge 0$$
 and $\int_{-\infty}^{\infty} f(x) \mathrm{d}x = 1$

 \succ Cumulative distribution function is probability of $X \leq x$

$$F(x) = P(X \le x) = \int_{-\infty}^{x} f(u) du$$

Expected value and Variance

 \succ Expected value E[X] and variance V[X] are given by

Expected value:
$$E[X] = \int_{-\infty}^{\infty} x f(x) dx$$

Variance:
$$V[X] = E[(X - \mu)^2] = \int_{-\infty}^{\infty} (x - \mu)^2 f(x) dx$$

where
$$\mu = E[X]$$

Relationship between expected value and variance

$$V[X] = E[(X - \mu)^2] = E[X^2] - E[X]^2$$

Skewness and Kurtosis

- Skewness and Kurtosis are also statistics to characterize p.d.f.
- Skewness: measure for asymmetric diversity of p.d.f

$$\frac{1}{\sigma^3} E[(X-\mu)^3] = \frac{1}{\sigma^3} \int_{-\infty}^{\infty} (x-\mu)^3 f(x) dx$$

Kurtosis: measure for flatness of p.d.f.

$$\frac{1}{\sigma^4} E[(X-\mu)^4] = \frac{1}{\sigma^4} \int_{-\infty}^{\infty} (x-\mu)^4 f(x) dx$$

where $\sigma^2 = V[X]$

 \succ In general, moment of n th order is defined as

$$E[(x-\mu)^n]$$

Shape of p.d.f. is determined if all moments are determined

Normal distribution (Gaussian distribution)

 \succ P.d.f. of normal distribution of mean $\,\mu$ and variance σ^2

$$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$$

:= $\mathcal{N}(x;\mu,\sigma^2)$

 $\left[\operatorname{Random} \operatorname{variable} X \operatorname{follows} \operatorname{normal} \operatorname{distribution} \Longrightarrow X \sim \mathcal{N}(x; \mu, \sigma^2) \right]$

- > Useful for modeling various phenomena (central limit theorem)
- > Normal distribution is determined only by 1st- and 2nd-order moments
- P.d.f. having larger skewness than normal distribution is called super-Gaussian function, and having less skewness is sub-Gaussian function

Multivariate distribution

Consider joint probability distribution for more than one random variables
 Joint probability density function f(x, y) for random variables X and Y satisfies

$$P(a \le X \le b, c \le Y \le d) = \int_{c}^{d} \int_{a}^{b} f(x, y) \mathrm{d}x \mathrm{d}y$$

> Marginalization means eliminating one variable by integration of joint p.d.f.

$$g(x) = \int_{-\infty}^{\infty} f(x, y) dy$$
, $h(y) = \int_{-\infty}^{\infty} f(x, y) dx$

Multivariate distribution

- In multivariate case, random variables are sometimes represented by vectors
- > Representing N random variables by column vector $\boldsymbol{x} = [x_1, \dots, x_N]^T$
- ➤ Mean:

$$\boldsymbol{\mu} = E[\boldsymbol{x}]$$
$$= [E[x_1], \dots, E[x_N]]^{\mathsf{T}}$$
$$= [\mu_1, \dots, \mu_N]^{\mathsf{T}}$$

Covariance matrix:

$$\Sigma = E[(\boldsymbol{x} - \boldsymbol{\mu})(\boldsymbol{x} - \boldsymbol{\mu})^{\mathsf{T}}] \\ = \begin{bmatrix} E[(x_1 - \mu_1)^2] & \cdots & E[(x_1 - \mu_1)(x_N - \mu_N)] \\ \vdots & \ddots & \vdots \\ E[(x_N - \mu_N)(x_1 - \mu_1)] & \cdots & E[(x_N - \mu_N)^2] \end{bmatrix}$$

Multivariate normal distribution

> P.d.f. of *N* dimensional normal distribution:

$$f(\boldsymbol{x}) = \frac{1}{(2\pi)^{N/2} |\boldsymbol{\Sigma}|^{1/2}} \exp\left(-\frac{1}{2}(\boldsymbol{x} - \boldsymbol{\mu})^{\mathsf{T}} \boldsymbol{\Sigma}^{-1}(\boldsymbol{x} - \boldsymbol{\mu})\right)$$
$$= \mathcal{N}(\boldsymbol{x}; \boldsymbol{\mu}, \boldsymbol{\Sigma})$$

Vector of random variables x following normal distribution is represented as

$$oldsymbol{x} \sim \mathcal{N}(oldsymbol{x};oldsymbol{\mu},oldsymbol{\Sigma})$$

- If statistical properties of signal is constant irrespective of time, that signal is called stationary signal. If not, that signal is called non-stationary signal.
 - Weakly stationary: Mean and variance of signal are constant irrespective of time
 - Strongly stationary: Higher-order statistics (including skewness and kurtosis),
 i.e., p.d.f of signal, are constant irrespective of time

- \succ Statistics of stationary signal x(t)
 - Ensemble mean:

$$u = E[x(t)] = \int_{-\infty}^{\infty} x f(x) dx$$

 $a \infty$

Autocorrelation function:

$$R(\tau) = E[x(t+\tau)x(t)] = \int_{-\infty}^{\infty} x_1 x_2 f(x_1, x_2; \tau)$$

Dependent only on time difference

– Crosscorrelation function:

$$R_{xy}(\tau) = E[x(t+\tau)y(t)] = R_{yx}(-\tau)$$

Autocovariance function:

$$C(\tau) = E[(x(t+\tau) - \eta)(x(t) - \eta)] = R(\tau) - \eta^{2}$$

– Crosscovariance function:

$$C_{xy}(\tau) = E[(x(t+\tau) - \eta_x)(y(t) - \eta_y)] = R_{xy}(\tau) - \eta_x \eta_y$$

➤ Time average:

$$\bar{x}(t) = \lim_{T \to \infty} \int_{-T/2}^{T/2} x(t) \mathrm{d}t$$

- Ergodicity:
 - When time average and ensemble mean of stationary signal are equal, the signal has ergodicity
 - Stationary signal does not necessarily have ergodicity

Uncorrelated

$$E[x(t_1)y(t_2)] = E[x(t_1)]E[y(t_2)]$$

> Independent

$$f_{xy}(x, y; t_1, t_2) = f_x(x; t_1) f_y(y; t_2)$$

Independent signals are uncorrelated, but uncorrelated signals are not necessarily independent

Example: direction-of-arrival estimation

Estimating direction of sound source by using two mics based on time difference estimation

$$\begin{cases} s_1(t) = x(t - \tau_0) + n_1(t) \\ s_2(t) = x(t) + n_2(t) \\ \tau_0 = D\sin\theta/c \end{cases}$$

Peak of crosscorrelation function corresponds to au_0

$$R_{12}(\tau) = E[s_1(t+\tau)s_2(t)]$$

STATISTICAL MODEL AND ESTIMATION

Parameter estimation

- Suppose to estimate unknown parameter $\boldsymbol{x} = [x_1, \dots, x_N]^{\mathsf{T}} \in \mathbb{R}^N$ from observed signal $\boldsymbol{y} = [y_1, \dots, y_M]^{\mathsf{T}} \in \mathbb{R}^M$ $(M \ge N)$
- > Three representative parameter estimation methods (w/ p.d.f. $p(\cdot)$)
 - Maximum likelihood (ML) estimation:

$$\underset{\boldsymbol{x}}{\operatorname{maximize}} p(\boldsymbol{y}; \boldsymbol{x})$$

– Maximum a posteriori (MAP) estimation:

$$\operatorname*{maximize}_{\boldsymbol{x}} p(\boldsymbol{x};\boldsymbol{y})$$

– Minimum mean-square error (MMSE) estimation:

$$\min_{\hat{x}} \operatorname{minimize} E[\|\hat{x} - x\|^2; y]$$

Linear model

Linear model is widely-used measurement model:

$$y = Ax$$

▶ A is matrix of M × N having real-valued elements (i.e., A ∈ $\mathbb{R}^{M \times N}$)
 ▶ Each element is given by

$$y_m = \sum_{n=1}^{N} a_{mn} x_n$$

 \succ Here, A is assumed to be given

ML estimation

- > Observation values x_1, \ldots, x_N are obtained as realization of random variables X_1, \ldots, X_N by N observations
- In maximum likelihood principle, the measured observation is considered to be realization of the maximum probability, i.e., the most likely occurrence
- > P.d.f. that observation x_n follows is denoted with paramater θ of p.d.f. as $f(x_n|\theta)$
- > When observed signals are independent and identically distributed (i.i.d.),

$$P(X_1 = x_1, \dots, X_N = x_N) = \prod_{n=1}^N P(X_n = x_n)$$
$$= \prod_{n=1}^N f(x_n | \theta)$$

ML estimation

> Likelihood function $\mathcal{L}(\theta)$ is function of θ represented by p.d.f. of observed signal

$$\mathcal{L}(\theta) = \prod_{n=1}^{N} f(x_n | \theta)$$

➢ In ML estimation, estimate is given as θ such that likelihood function is maximized

$$\hat{\theta} = \arg \max_{\theta} \mathcal{L}(\theta)$$

> In many cases, log likelihood function (natural logarithm of $\mathcal{L}(\theta)$) is used because of simplicity of computation

log is monotonically increasing function

$$\hat{\theta} = rg\max_{\theta} \log \mathcal{L}(\theta)$$

 \succ When additive noise $oldsymbol{n} \in \mathbb{R}^M$ is superimposed on the observation,

$$y = Ax + n$$

> Noise is assumed to follow multivariate normal distribution of mean 0 and variance σ^2 , i.e., $n \sim \mathcal{N}(n; 0, \sigma^2 I)$

$$p(\boldsymbol{n}) = \frac{1}{(2\pi\sigma^2)^{M/2}} \exp\left(-\frac{1}{2\sigma^2} \|\boldsymbol{n}\|^2\right)$$

> P.d.f. of observation p(y) becomes

$$p(\boldsymbol{y}) = \frac{1}{(2\pi\sigma^2)^{M/2}} \exp\left(-\frac{1}{2\sigma^2} \|\boldsymbol{y} - \boldsymbol{A}\boldsymbol{x}\|^2\right)$$

 \succ Suppose to infer $oldsymbol{x}$ by ML estimation. Log likelihood function becomes

$$\log \mathcal{L}(\boldsymbol{x}) = \log p(\boldsymbol{y}) = -\frac{1}{2\sigma^2} \|\boldsymbol{y} - \boldsymbol{A}\boldsymbol{x}\|^2 + C$$

Constant not including $oldsymbol{x}$

 \succ ML solution $\hat{m{x}}$ is obtained by solving

$$\hat{oldsymbol{x}} = rgmin_{oldsymbol{x}} \|oldsymbol{y} - oldsymbol{A}oldsymbol{x}\|^2$$

Correspond to least-squares method that estimates unknown variable by minimizing cost function of squared errors

 \succ By differentiating cost function by x and setting it to 0,

$$\begin{aligned} \frac{\partial}{\partial x} \| y - Ax \|^2 &= \frac{\partial}{\partial x} \left(y^{\mathsf{T}} y - x^{\mathsf{T}} A^{\mathsf{T}} y - y^{\mathsf{T}} Ax + x^{\mathsf{T}} A^{\mathsf{T}} Ax \right) \\ &= -A^{\mathsf{T}} y - \left(y^{\mathsf{T}} A \right)^{\mathsf{T}} + 2A^{\mathsf{T}} Ax \\ &= 2 \left(-A^{\mathsf{T}} y + A^{\mathsf{T}} Ax \right) \\ &= 0 \end{aligned}$$

> Cf., differential formula for vectors

$$\frac{\partial \boldsymbol{x}^{\mathsf{T}} \boldsymbol{b}}{\partial \boldsymbol{x}} = \frac{\partial \boldsymbol{b}^{\mathsf{T}} \boldsymbol{x}}{\partial \boldsymbol{x}} = \boldsymbol{b}$$
$$\frac{\partial \boldsymbol{x}^{\mathsf{T}} \boldsymbol{B} \boldsymbol{x}}{\partial \boldsymbol{x}} = (\boldsymbol{B} + \boldsymbol{B}^{\mathsf{T}}) \boldsymbol{x}$$

 \succ Optimal solution $\hat{oldsymbol{x}}$ is

$$\hat{oldsymbol{x}} = ig(oldsymbol{A}^{\mathsf{T}}oldsymbol{A}ig)^{-1}oldsymbol{A}^{\mathsf{T}}oldsymbol{y}$$

In linear model, ML solution with Gauusian assumption for noise corresponds to least-squares solution

Bayesian estimation

- In Bayesian estimation, unknown variable x of linear model is also regarded as random variable Main difference from ML estimation
- Based on Bayesian theorem, posterior probability ditribution, i.e., p.d.f. of x given y is represented as

$$p(\boldsymbol{x};\boldsymbol{y}) = \frac{p(\boldsymbol{y};\boldsymbol{x})p(\boldsymbol{x})}{\int p(\boldsymbol{y};\boldsymbol{x})p(\boldsymbol{x})\mathrm{d}\boldsymbol{x}} \propto p(\boldsymbol{y};\boldsymbol{x})p(\boldsymbol{x})$$

– where $p(\boldsymbol{x})$ is prior distribution, and $p(\boldsymbol{y}; \boldsymbol{x})$ is likelihood

MAP estimation

> In MAP estimation, the estimate is obtained by

$$\hat{\boldsymbol{x}} = \arg \max_{\boldsymbol{x}} p(\boldsymbol{x}; \boldsymbol{y})$$

= $\arg \max_{\boldsymbol{x}} p(\boldsymbol{y}; \boldsymbol{x}) p(\boldsymbol{x})$ Bayesian theorem

- When there is no prior information, p(x) becomes constant (non-informative prior distribution), then, MAP estimate corresponds to ML estimate
- If prior distribution is conjugate prior of likelihood, posterior distribution can be simply calculated. E.g., when both p(x) and p(y; x) are Gaussian, posterior distribution p(x; y) also becomes Gaussian

> Assume Gaussian prior $\boldsymbol{x} \sim \mathcal{N}(\boldsymbol{x}; \boldsymbol{0}, \sigma_x^2 \boldsymbol{I})$

$$p(\boldsymbol{x}) = \frac{1}{(2\pi\sigma_x^2)^{N/2}} \exp\left(-\frac{1}{2\sigma_x^2} \|\boldsymbol{x}\|^2\right)$$

> MAP estimate is obtained as

$$\begin{split} \hat{\boldsymbol{x}} &= \operatorname*{arg\,min}_{\boldsymbol{x}} \left[-\log p(\boldsymbol{x}; \boldsymbol{y}) - \log p(\boldsymbol{x}) \right] \\ &= \operatorname*{arg\,min}_{\boldsymbol{x}} \left[\frac{1}{\sigma^2} \| \boldsymbol{y} - \boldsymbol{A} \boldsymbol{x} \|^2 + \frac{1}{\sigma_x^2} \| \boldsymbol{x} \|^2 \right] \\ &= \left(\boldsymbol{A}^\mathsf{T} \boldsymbol{A} + \frac{\sigma^2}{\sigma_x^2} \boldsymbol{I} \right)^{-1} \boldsymbol{A}^\mathsf{T} \boldsymbol{y} \end{split}$$

Corresponds to regularized least-squares solution

MMSE estimation

> In MMSE estimation, expected value of square error between ground truth x and estimate \hat{x} is minimized to obtain the estimate \hat{x}

$$\hat{\boldsymbol{x}} = \operatorname*{arg\ min}_{\hat{\boldsymbol{x}}} E[\|\hat{\boldsymbol{x}} - \boldsymbol{x}\|^2]$$

 \succ Suppose to estimate by using linear MMSE estimator H as $\hat{x} = Hy$

$$\underset{\boldsymbol{H}}{\operatorname{minimize}} E[\|\boldsymbol{H}\boldsymbol{y} - \boldsymbol{x}\|^2]$$

– Then, MMSE estimation is reduced to obtain the optimal *H*

APPLICATION EXAMPLES OF STATISTICAL ESTIMATION

Beamforming

> Enhancing target source signal by multiple mics

Beamforming

Likelihood function

$$p(\boldsymbol{y}|s) = \frac{1}{\det(\pi\sigma^2 \boldsymbol{I})} \exp\left(-\frac{1}{2\sigma^2} \|\boldsymbol{y} - \boldsymbol{a}s\|^2\right)$$

> ML estimate of target source signal

$$egin{aligned} \hat{s} &= rg\max_{s} p(oldsymbol{y}|s) \ &= rg\min_{s} \|oldsymbol{y} - oldsymbol{a}s\|^2 \ &= rac{oldsymbol{a}^{\mathsf{H}}oldsymbol{y}}{oldsymbol{a}^{\mathsf{H}}oldsymbol{a}} \end{aligned}$$

Corresponds to delay-and-sum beamformer

Delay-and-sum beamformer

Time-delay of each mic is compensated, then in-phase signals are summed up to enhance sound from target direction

Array manifold vector:
$$\boldsymbol{a} = \begin{bmatrix} \mathrm{e}^{-\mathrm{j}\omega au_1}, & \ldots, & \mathrm{e}^{-\mathrm{j}\omega au_M} \end{bmatrix}^\mathsf{T}$$

Linear prediction

- Linear prediction: Predicting current signal value by linear combination of past signal values
- \succ When using L samples of past signal values,

$$\hat{x}[n] = \sum_{l=1}^{L} h_l x[n-l]$$

 \succ Expected value of square prediction error E_L is formulated as

$$E_L = E[(x[n] - \hat{x}[n])^2]$$
$$= E\left[\left(x[n] - \sum_{l=1}^L h_l x[n-l]\right)^2\right]$$

Linear prediction

Need to obtain coefficients h_l so that E_L is minimized. Such coefficients are obtained by setting differential of E_L by h_l to 0 as

$$\frac{\partial E_L}{\partial h_k} = E\left[-2x[n-k]\left(x[n] - \sum_{l=1}^L h_l x[n-l]\right)\right]$$
$$= 2\sum_{l=1}^L h_l E\left[x[n-k]x[n-l]\right] - 2E\left[x[n-k]x[n]\right]$$
$$= 0$$

> By denoting autocorrelation function of x[n] as $\varphi[k] = \varphi[-k] = E[x[n]x[n-k]]$

$$\sum_{l=1}^{L} h_l \varphi[l-k] = \varphi[k]$$

Linear prediction

Matrix-vector representation

$$\begin{bmatrix} \varphi[0] & \varphi[1] & \cdots & \varphi[L-1] \\ \varphi[1] & \varphi[2] & \cdots & \vdots \\ \vdots & \ddots & \ddots & \varphi[1] \\ \varphi[L-1] & \cdots & \varphi[1] & \varphi[0] \end{bmatrix} \begin{bmatrix} h_1 \\ h_2 \\ \vdots \\ h_L \end{bmatrix} = \begin{bmatrix} \varphi[1] \\ \varphi[2] \\ \vdots \\ h_L \end{bmatrix}$$

- Optimal linear prediction coefficients are obtained by solving the above equation, which is called Yule-Walker equations
- Since the left side is Toeplitz matrix, an efficient technique, which is called Levinson—Durbin algorithm, can be used
- > This signal model is also called auto-regressive (AR) model

Speech generation model

Speech generation model

Vocal tract characteristics is well approximated by linear prediction

Spectral envelope obtained by linear prediction

Residual error between original speech and linear prediction

Widely used for speech coding for data compression (cf. code excited linear prediction coder: CELP)

Adaptive filter

- Objective of adaptive filter is to extract the desired signal by statistical learning of observed signal
- > Obtaining filter $w = [w_1, \dots, w_K]^T$ so that output signal y_k of input u_k corresponds to the desired signal d_k

Wiener filter

- Wiener filter: Applying MMSE estimation to adaptive filtering under the constraint of linear estimator
- > Filter coefficients and input signal vectors are defined as

$$\boldsymbol{w} = [w_1, \dots, w_K]^\mathsf{T}$$
$$\boldsymbol{u}_k = [u_k, u_{k-1}, \dots, u_{k-K+1}]^\mathsf{T}$$

> Then, filter convolution is described by inner product

$$y_k = \boldsymbol{w}^\mathsf{T} \boldsymbol{u}_k$$
$$= \sum_{i=1}^K w_i u_{k-i+1}$$

Wiener filter

 \succ Estimation error is represented by using known desired signal d_k as $\epsilon_k = d_k - y_k$

> Cost function for Wiener filter is defined as mean square error

$$\begin{aligned} \mathcal{J} &= E[|\epsilon_k|^2] \\ &= E\left[(d_k - \boldsymbol{w}^{\mathsf{T}} \boldsymbol{u}_k)(d_k - \boldsymbol{w}^{\mathsf{T}} \boldsymbol{u}_k)^{\mathsf{T}}\right] \\ &= E[d_k^2] - \boldsymbol{w}^{\mathsf{T}} E[\boldsymbol{u}_k d_k] - E[d_k \boldsymbol{u}_k^{\mathsf{T}}] \boldsymbol{w} + \boldsymbol{w}^{\mathsf{T}} E[\boldsymbol{u}_k \boldsymbol{u}_k^{\mathsf{T}}] \boldsymbol{w} \\ &= \sigma_d^2 - \boldsymbol{w}^{\mathsf{T}} \boldsymbol{r}_{ud} - \boldsymbol{r}_{du} \boldsymbol{w} + \boldsymbol{w}^{\mathsf{T}} \boldsymbol{R}_u \boldsymbol{w} \end{aligned}$$
where
$$\begin{cases} \sigma_d^2 := E[d_k^2], \quad \boldsymbol{R}_u := E[\boldsymbol{u}_k \boldsymbol{u}_k^{\mathsf{T}}] \\ \boldsymbol{r}_{ud} := E[\boldsymbol{u}_k d_k], \quad \boldsymbol{r}_{du} := E[d_k \boldsymbol{u}_k] \end{cases}$$

Wiener filter

 \succ By differentiating cost function by $oldsymbol{w}$

$$rac{\partial \mathcal{J}}{\partial oldsymbol{w}} = 2(-oldsymbol{r}_{ud} + oldsymbol{R}_uoldsymbol{w})$$

By setting the above derivative to 0, the following normal equation (or Wiener—Hopf equation) is obtained

$$R_u w = r_{ud}$$

> Then, optimal filter is obtained as

$$\hat{oldsymbol{w}} = oldsymbol{R}_u^{-1}oldsymbol{r}_{ud}$$

Adaptive algorithm is practically used for real-time adaptation

Speech enhancement

- Speech enhancement from noisy observation
- > (Non-causal) Wiener filtering in frequency domain

Crosstalk cancellation

Spatial audio by using loudspeakers

Matching listener's binaural signal with signal captured by dummy head

Crosstalk cancellation

Matrix-vector formulation

$$\begin{aligned} \boldsymbol{s}(\omega) &= \begin{bmatrix} s_1(\omega) \\ s_2(\omega) \end{bmatrix} \\ &= \begin{bmatrix} G_{11}(\omega) & G_{21}(\omega) \\ G_{12}(\omega) & G_{22}(\omega) \end{bmatrix} \begin{bmatrix} y_1(\omega) \\ y_2(\omega) \end{bmatrix} \\ &= \begin{bmatrix} G_{11}(\omega) & G_{21}(\omega) \\ G_{12}(\omega) & G_{22}(\omega) \end{bmatrix} \begin{bmatrix} H_{11}(\omega) & H_{21}(\omega) \\ H_{12}(\omega) & H_{22}(\omega) \end{bmatrix} \begin{bmatrix} p_1(\omega) \\ p_2(\omega) \end{bmatrix} \\ &= \boldsymbol{G}(\omega) \boldsymbol{H}(\omega) \boldsymbol{p}(\omega) \end{aligned}$$

Least-squares estimation of

$$\hat{\boldsymbol{H}}(\omega) = \underset{\boldsymbol{H}}{\operatorname{arg\,min}} \|\boldsymbol{G}(\omega)\boldsymbol{H}(\omega) - \boldsymbol{I}\|^{2}$$
$$= (\boldsymbol{G}^{\mathsf{H}}\boldsymbol{G})^{-1}\boldsymbol{G}^{\mathsf{H}}(=\boldsymbol{G}^{-1})$$