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What is Signal Processing?

» Techniques for analyzing, modifying, and synthesizing signals, such as
sound, images, and others

Input: T — L: — Qutput: Y

Generating output Y by processing
input = using mapping L

See also https://youtu.be/R90ciUoxcJU
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From deterministic to statistical signal processing

> Asignalis considered to be deterministic in the classical signal processing

> In statistical signal processing, the observed signal is considered to be a
stochastic process, i.e., random signal

=) Gain insight into statistical property of signals
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From deterministic to statistical signal processing

> Basic concept of statistical inference

Sample distribution

Sample vari

Sample average

Observation

ance -
>

Inference

Population

Population

Population average

Estimating some amounts of statistics of population

variance

(e.g., population average/variance) from observed samples




BASICS OF STATISTICS/STOCHASTIC PROCESS
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Probability density function

> Random variable X taking continuous value holds

b
Pla< X <b)= | f(x)dx
/\ a
[Probability that random variable X takes the value of |a, ] ]

» f(z) is called probability density function (or p.d.f.) of X satisfying

f@z0 amd [

> Cumulative distribution function is probability of X < x

F(a:):P(XSw):/_x f(u)du
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Expected value and Variance

> Expected value E[X]and variance V|X] are given by

Expected value: E[X] :/ rf(z)d

— OO

Variance: VIX]=E[(X — n)? = / (x — p)° f(z)dx

— 0

where p= FE|X]

> Relationship between expected value and variance

V[X] = E[(X — p)*] = B[X"] - B[X]*
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Skewness and Kurtosis

> Skewness and Kurtosis are also statistics to characterize p.d.f.
> Skewness: measure for asymmetric diversity of p.d.f

> Kurtosis: measure for flatness of p.d.f.

i4]3[(X —)*] = i4 /OO (2 — p)* f(z)da

o 0% J_ oo

> In general, moment of nth order is defined as
El(x —p)"

Shape of p.d.f. is determined if all moments are determined




Normal distribution (Gaussian distribution)
> P.d.f. of normal distribution of mean i and variance o

f0)= e ()

= N(z; p,0%)

[Random variable X follows normal distribution mp X ~ A (z; 02)}

> Useful for modeling various phenomena (central limit theorem)
» Normal distribution is determined only by 1st- and 2nd-order moments

» P.d.f. having larger skewness than normal distribution is called super-
Gaussian function, and having less skewness is sub-Gaussian function

November 26, 2024



Multivariate distribution

» Consider joint probability distribution for more than one random variables

> Joint probability density function f(z,y) for random variables X and Y
satisfies

d b
P(aSXSb,céYéd)zf / f(z,y)dzdy

» Marginalization means eliminating one variable by integration of joint p.d.f.

g(x) :/_OO flz,y)dy ,  h(y) I/OO f(z,y)dz
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Multivariate distribution

> In multivariate case, random variables are sometimes represented by

vectors
> Representing N random variables by column vector @ = [z1,...,zn]"
» Mean:
p = Elx]
= [Elz1],..., Elzn]]’
= |y, -,MN]

» Covariance matrix:

3 =El(z—p)(z—p)]
- E[(z1 — )7 o El(wr — ) (en — pw)]

Eley — )@ — )] - Ellex — )
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Multivariate normal distribution

> P.d.f. of Ndimensional normal distribution:

(@) = ey @ (50— W= @ - )

=N(z; p, %)

» Vector of random variables @ following normal distribution is represented
as

z ~ N(z; p, X)
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Statistics of random signal

> If statistical properties of signal is constant irrespective of time, that signal is
called stationary signal. If not, that signal is called non-stationary signal.

— Weakly stationary: Mean and variance of signal are constant irrespective of time

— Strongly stationary: Higher-order statistics (including skewness and kurtosis),
l.e., p.d.f of signal, are constant irrespective of time
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Statistics of random signal

> Statistics of stationary signal x ()
— Ensemble mean: 00

p=EBlalt) = [ af(a)ds
— Autocorrelation function:
R(7) = Ela(t + ()] = / R
— Crosscorrelation function:
Ryy(7) = Elz(t +7)y(t)] = Ryz(—7)

— Autocovariance function:

C(r) = El(z(t + 1) —n)(z(t) — n)] = R(1) — n*

— Crosscovariance function:
Cwy(T) — E[(x(t + 7') — Ux)(y(t) — ny)] = Racy(T) — Nz My
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time difference




Statistics of random signal

> Time average:

> Ergodicity:
— When time average and ensemble mean of stationary signal are equal, the signal
has ergodicity

— Stationary signal does not necessarily have ergodicity
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Statistics of random signal

> Uncorrelated
Ela(t)y(t2)] = Elz(t)] Ely(ts2)]

» Independent

foy(@yste, t2) = fa(xste) fy(y; t2)

» Independent signals are uncorrelated, but uncorrelated signals are not
necessarily independent
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Example: direction-of-arrival estimation

» Estimating direction of sound source by using two mics based on time
difference estimation

[

) ==
/ 1 s2(t) = () + na(?)

Arrival J

Distance
difference

direction 70 = D sin @/C
Dsinﬁf
— Peak of crosscorrelation function
Pair of mics corresponds to 7o

with interval of D
Rio(7) = Els1(t + 7)s2(t)]
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STATISTICAL MODEL AND ESTIMATION
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Parameter estimation

> Suppose to estimate unknown parameter x = [z1,...,zx]|" € R" from
observed signal ¥ = [y1,--.,yn]' € RM (M > N)

> Three representative parameter estimation methods (w/ p.d.f. p(-))
— Maximum likelihood (ML) estimation:

maxiwmize p(y; x)

— Maximum a posteriori (MAP) estimation:
max{inmize p(x;y)

— Minimum mean-square error (MMSE) estimation:

minimize E[||& — z||*; y|
xXr
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Linear model

» Linear model is widely-used measurement model:
y = Ax

» A ismatrixof M x N having real-valued elements (i.e., A € RM*¥)
» Each element s given by

N %)thelement of A
Ym — Z AmnLn

n=1

» Here, A isassumed to be given
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ML estimation

> Observation values x1, ..., N are obtained as realization of random
variables X1,..., Xy by N observations

» In maximum likelihood principle, the measured observation is considered to
be realization of the maximum probability, i.e., the most likely occurrence

> P.d.f. that observation &;, follows is denoted with paramater 6 of p.d.f. as
f(zn]0)

» When observed signals are independent and identically distributed (i.i.d.),

P(Xy=w1,...,Xy =2y) = || P(Xp = =)
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ML estimation

> Likelihood function £(8) is function of 6 represented by p.d.f. of observed
signal

£(0) = ] £(alo)

> In ML estimation, estimate is given as § such that likelihood function is
maximized

f = arg max £(6)
7

> In many cases, log likelihood function (natural logarithm of £(8)) is used

because of simplicity of computation
log is monotonically
increasing function
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ML estimation in linear model

> When additive noisen € R™ is superimposed on the observation,
y=Ax+n

> Noise is assumed to follow multivariate normal distribution of mean 0 and
variance o, i.e.,n ~ N(n;0,0%1)

o 1
p(n) — (27T0'2)M/2 EXPp _ﬁHnH

> P.d.f. of observation P(¥) becomes

1 | ,
) = i o (s v — Aa?)
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ML estimation in linear model

» Suppose to infer & by ML estimation. Log likelihood function becomes

1
y — Azx|]* +C

- 202
mot including ZB]

& = arg min |ly — Ax|”
€&

log L(x) = logp(y) =

> ML solution & is obtained by solving

» Correspond to least-squares method that estimates unknown variable by
minimizing cost function of squared errors
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ML estimation in linear model

> By differentiating cost function by & and setting it to 0,
iH?J — Azx|]® = 9 ( Ty—axTATy —y" Az + a:TATAa:)
ox ox
——ATy— (y7A) +247 Az
=2(-A'y+ A" Az)

> Cf., differential formula for vectors

ox'b B b x b
or  Ox
T
Ox' Bx _(B+ BN

ox

November 26, 2024 25



ML estimation in linear model

> Optimal solution & is

= (ATA) ATy

> In linear model, ML solution with Gauusian assumption for noise
corresponds to least-squares solution
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Bayesian estimation

> In Bayesian estimation, unknown variable & of linear model is also regarded
as random variable m# Main difference from ML estimation

> Based on Bayesian theorem, posterior probability ditribution, i.e., p.d.f. of &
given Y is represented as

pay) = o LI i a)p(a)

— where p(z) is prior distribution, and p(¥; ) is likelihood
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MAP estimation

> In MAP estimation, the estimate is obtained by

T = arg max p(x;y)

L > Bayesian theorem
= arg max p(y; z)p(z)

Zr

> When there is no prior information, p(x) becomes constant (non-informative
prior distribution), then, MAP estimate corresponds to ML estimate

> If prior distribution is conjugate prior of likelihood, posterior distribution can
be simply calculated. E.g., when both p(x) and p(y; ) are Gaussian, posterior
distribution p(x; y¥) also becomes Gaussian
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MAP estimation in linear model

» Assume Gaussian prior  ~ N (x;0,021)

_ 1 1 2
p(CIZ‘) — (27_‘_0_:%)]\]/2 eXPp _ﬁHwH

T

> MAP estimate is obtained as

& = argmin [—log p(z; y) — log p(x)]

T

. 1 1
_ argmin [—2Hy ~ Al + —2\|wn2]
9 b o) 0]

T

O

T o> \ 7 T

mm) Corresponds to regularized least-squares solution
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MMSE estimation

» In MMSE estimation, expected value of square error between ground truth @
and estimate @ is minimized to obtain the estimate

£ = arg min B|||2 — z||°]

T

» Suppose to estimate by using linear MMSE estimator H as € = Hy
minlirjrrnize El|Hy — z||*]

— Then, MMSE estimation is reduced to obtain the optimal H
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APPLICATION EXAMPLES OF
STATISTICAL ESTIMATION
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» Enhancing target source signal by multiple mics

Target source Linear measurement model
N S y1(w) |
Transfer function Yy(w) = : .
oy (w)_ / Noise

M a1 (w) | - n(w) |

Mics — f s(w) +
/ am(w) ] (W)

YY ---Y---Y =a(w)s(w) + n(w)

Y1 Ym

P.d.f. for noise: Complex Gaussian
n ~ Nc(n;0,0°1)
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> Likelihood function

eX as

» ML estimate of target source signal

5 = arg max p(y|s)

S

= argmin ||y — as||’

S
aty
aa

mm) Corresponds to delay-and-sum beamformer
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Delay-and-sum beamformer

» Time-delay of each mic is compensated, then in-phase signals are summed
up to enhance sound from target direction
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Linear prediction

> Linear prediction: Predicting current signal value by linear combination of
past signal values

» When using L samples of past signal values,

#n] =) hn 1]

> Expected value of square prediction error Ey is formulated as

Ep, = E|(z[n] - 2[n])"]

=F (az[n] — Z hixn — l])

ﬂ MMSE estimation to obtain h;
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Linear prediction

> Need to obtain coefficients h; so that E'r is minimized. Such coefficients are
obtained by setting differential of E'z, by h; to 0 as

—2x[n — k ( Zhlaznzﬂ

=2 Z hE [xn — klxn —1]] — 2F [x|n — k|x|n]]

=0

OFET,

L _ B
Ohp

» By denoting autocorrelation function of [n] as ¢[k] = ¢[—k] = E[z[n]z[n — k]
L
thw[l — k| = plk]
=1
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Linear prediction

> Matrix-vector representation

o0l elt) e GlL-U] Th T
ol ol2 | || _ |eld
=1 el g | L] Lol

» Optimal linear prediction coefficients are obtained by solving the above
equation, which is called Yule-Walker equations

> Since the left side is Toeplitz matrix, an efficient technique, which is called
Levinson—Durbin algorithm, can be used

» This signal model is also called auto-regressive (AR) model
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Speech generation model

» Vocal tract system

Vocal tract characteristics
— Spectral shape

s Opening-and-closing of vocal folds
J . — Cyclic pulse train

Speech can be modeled by convolution
of cyclic pulse train and vocal tract filter

m) Source-filter model
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Spectral envelope obtained
by linear prediction

—— FFT spectrum |
LP spectrum

Frequency (Hz)

Speech generation model

Residual error between original
speech and linear prediction

027

0.1 7

-0.1

-0.2

» Vocal tract characteristics is well approximated by linear prediction

—— Signal |
Error

lHHHH

.H'H“”

0.02 0.04 006 0.08 0.1 0.12
Time (s)

Widely used for speech coding for data compression

(cf. code excited linear prediction coder: CELP)




Adaptive filter

> Objective of adaptive filter is to extract the desired signal by statistical
learning of observed signal

» Obtaining filter w = [wy,...,wk]' sothat output signal ¥x of input ug
corresponds to the desired signal dj

dj.

_|_
Uk q w yké— €k
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Wiener filter

> Wiener filter: Applying MMSE estimation to adaptive filtering under the
constraint of linear estimator

> Filter coefficients and input signal vectors are defined as

w — [wl,...,wK]T

U = [U/k, Uk —1y--- 7uk—K—|—1]T

> Then, filter convolution is described by inner product

-
Y — W Uk

K
— E WUk —i41
i=1
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Wiener filter

> Estimation error is represented by using known desired signal dg as

€ = di — Yk
> Cost function for Wiener filter is defined as mean square error

J = Ellex]?]
= E [(dy, — w'uy)(dy — ’wTuk)T}
= F[d?] — w' Elugd,] — Eldpu, Jw + w' Eluiu, |w
= 0621 —w'r,y — rg,w +w' R,w

gum—

O'Czi — E[d2] , R E[uku?ﬂ:]
_rud .= [ukdk] — E[dkuk]

where S
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Wiener filter

» By differentiating cost function by w
o0J

a—w — 2(—rud -+ Ruw)

> By setting the above derivative to 0, the following normal equation (or
Wiener—Hopf equation) is obtained

Ru’w = Tud

> Then, optimal filter is obtained as

’UAJ — R;lrud

Adaptive algorithm is practically used for real-time adaptation




Speech enhancement

» Speech enhancement from noisy observation
> (Non-causal) Wiener filtering in frequency domain

Power spectral density ]
(e 4! of original signal
W(w) = )

S(w) + N(w) Power spectral density ]

SNR is estimated in of noise
non-speech section

\ Noisy observation E

0.5

Enhanced speech ™ "

0.5

-0.5

05 1 1s 2 25 3
% 10*
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Crosstalk cancellation

» Spatial audio by using loudspeakers

Dummy head P Listener
Hll A% Gll
P1 51
. Hoq .
P2 S2
Hoo N
Y2

m) Matching listener’s binaural signal with signal captured by dummy head
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Crosstalk cancellation

> Matrix-vector formulation

_|s1(w)
s(w) = _SQ(W)]
_ [Gu(w)  Gar(w)] _yl(w)]
Gr2(w) Gao(w)| [y2(w)
_ |Guw) Gu(w)| [Hi(w) H21(w)] lpl(w)]
Gi2(w) Ga(w)] [Hiz(w) Haz(w)| [p2(w)
= G(w)H (w)p(w)

> Least-squares estimation of

I:I(w) = argPIInin |G (W) H (w) — I||?

_ (GHG)—lGH(: G—l)
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