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What is Signal Processing?

» Techniques for analyzing, modifying, and synthesizing signals, such as
sound, images, and others

Input: T — L: — Qutput: Y

Generating output Y by processing
input = using mapping L

See also https://youtu.be/R90ciUoxcJU
November 19, 2024 2



What is Signal Processing?

> Noise reduction
— Input: speech contaminated by noise
— Output: enhanced speech by reducing noise

Noisy speech —— L: » Enhanced speech

Extracting speech signal based on
properties of speech and/or noise

N ol ) {j
a2 am ~
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What is Signal Processing?

> Speech recognition
— Input: Human’s speech
— Output: Spoken text

Speech —— L » Text

N

4 ™
Conversion from speech to text is learned

from a large amount of training data
\ y,
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SIGNAL AND LINEAR TIME-INVARIANT SYSTEM
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» Signal is temporal/spatial variations of physical quantities obtained by
sensors or their representation by symbols
— Speech, music, image, video, ultrasonic sonar, radiowave, brainwave, seismic wave,

stock price, etc.
Measurement ]

E—

Signal

Information
world

Physical

world

Synthesis
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» Signal used in this class is time-series signal: one-dimensional signal of
amplitude variation changing with time
— Continuous-time signal / Analog signal:
Continuous value of time and amplitude
— Discrete-time signal / Digital signal:
Discrete value of time and quantized value of amplitude

3,

Analog signal ZE(t)
?M\ / mm) Function
o) W Digital signal 513[71]

] 0 012 0.‘4 016 0‘.8 i 1.‘2 1.‘4 116 1‘.8 .
" mm) Numerical sequence / Vector

/\
[ Signal processing theory founds its basis on wide variety of mathematics ]
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» System: Representation of signal processing stages and input-output
characteristics

z(t) r y(t) = L]z(t)]
C

Converting input to output by mapping £

November 19, 2024 8



Linear time-invariant system

» Focusing on linear time-invariant (LTI) system
> Linearity:
— Superposition principle holds

L lax|n| 4 Byln|| = oL |zn|] + SL [y[n]

Va, s € C

> Time-invariance / Shift-invariance:
— System is consistent with time change

ylnl = Llz[n]] = yln —m| = Llz[n —m]|, Ym

Input-output characteristics of LTI system can be

decomposed into basic elements for analysis



Impulse response

> Definition of impulse response
— Output of LTI system h|n| when input is delta function [n]

1 =0
JOEE S
0, otherwise
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Impulse response

LTI system characteristics are fully described by impulse response

» When impulse response of LTI system is h[n], input signal z|n] and output
signal y|n_ have the following relationship:

— This operation is called convolution

Output signal of any input signal for LTI system can be computed

if its impulse response is known



Impulse response

> Arbitrary signal is written by weighted sum of delta function

x[n] x d[n] = Z x|ml|d[n — m] (- Z 5[m]x[nm]>

m=—oQ m=—oo

= ...+ z[n — 1]§[1] + z[n]é[0] + z[n + 1]6]—1] + ...

> Thus,

Equation above

= > z|m] does not depend on n.

N

N

||
8
El
o
>
S
|
3

hin] = L[o]n]]
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Impulse response

> In continuous case, input signal z(t) and output signal (%) are related by
convolution with impulse response of LTI system h(¢)

o

y(t) = h(t) xx(t) = / h(T)x(t — 7)dr

— OO

> Impulse response h(t)is output of LTI system when input is delta function §(¢)

oo, t=0

where  0(t) = 0. t+0

Not strictly correct representation
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Convolution

» Convolution is operation to obtain function/sequence from two
functions/sequences
— Continuous system:

— Discrete system:

= Z h{n — m]x|m)|
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Convolution

> In discrete case; yln] = i hm]z[n — m)]
) [ g
| h|4])x|n — 4]
z[0)x[1]x[2] - - - o) h[7]£l?[n _ 7]
2 ? o h[9]z[n — 9]

Convolution 3k yn, I ‘ i 7
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Convolution

> In discrete case, >
. yln] = > h[m]z[n —m]
z[0]z[1]z[2] - - - o

79
Convolution 3k y[n] T T T
* o000l || 1 o
o y[Oly[1]- - - yl4] - - y[7] yl9]
Al \ ? yln] =h[4Jfn — 4
ROJA[L] - -+ h[4] -+« h[7] h[9] - - -R[9] - - - + h[Tzln — 7]
+ h|9]z[n — 9]
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Convolution in acoustic signal processing

> Transfer characteristics from source (loudspeaker) to receiver (microphone)
can beregarded as LTI system

— Ifimpulse response is measured or predicted in advance, signal at the receiver position
from any source signal can be computed

— Here, impulse response represents characteristics of sound reflections at walls

Sourcesignal | /)]  Received signal [:‘;.-.j;.];;

% /Impulse response \

0.006

Source Receiver
0.004

0.002

0.000
—0.002

Amplitude

0.0 0.2 0.4 0.6 0.8 10

/ Time (s) /
0

Wall
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FOURIER TRANSFORM
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Fourier series expansion

» Expansion representation by approximating signal by linear combination of
sinusoidal signals

Fourier series expansion
Orthogonal basis expansion of continuous-time periodic signal () with period of T

o(t) = i Ch exp (QWT“)

k=—o0 1 )

' .
Complex sine-wave €'¥ = cosy + jsin g

1 (172 9
Cr = —/ x(t) exp (—jw—kt> dt (Fourier coefficient)
T J_ 1 T

Here,
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Fourier series expansion

» Another representation of Fourier series expansion

Fourier series expansion (represented by trigonometric functions)
Orthogonal basis expansion of continuous-time periodic signal z(t) with period of T

s 2kt = , 2kt
x(t) = ag + Z Q. COS (T) + kz_:l by Sin (T)

k=1

Here, 1 rT/2
ag = —/ x(t)dt
T/ 1 (t)

Q/T/2 (2%/{15)
ap = — x(t)cos | —— | dt
T ) 7 T

2 [1/2 okt
b, = —/ x(t) sin <L> dt
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> Saw wave

x(t):<(t—p, (p—%)Tgtg(p+%)T (p € Z)
0, otherwise
0.5
/|
P s a4 w05 0 05 1 1s 2

Time (s)
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T
— — COS
k

, 27t
sin | —
T

(k) sin (

T (
— — sin
27T

2wkt

T

)j

47t n
T

Odd functions are expanded
only by sine function

]
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From Fourier series to Fourier transform

> Fourier series expansion
— Aimed at approximating signal
— Only for periodic signals

By constraint of periodic signals, signal having uncountably many (i.e., continuous)
degrees of freedom is represented by countably many basis functions

— z(t) and (cx)rez are equivalent information if the series converges

 Just a difference in perspective

0= 3 e (1222)

k=—o0
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From Fourier series to Fourier transform

» Extension of Fourier series expansion to aperiodic signals
— Replacingwith Aw = 27/T, wy = 2nk/T

l/T/z (1)e _,27Tkt il e 2kt
T ) pp P\ TTT T

00 T/2
- [/ x(t) exp (—jwit) dt] exp (jwrt) Aw

27T‘k:—oo 72 |
lv Ajﬁ \
— When T — o0 (Aw — 0) \_ Wk Wit 1 5
2(t) = 2i / [ / 2 (1) exp (—jwt) dt] exp (jwt) dw
™ — OO — OO
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Fourier transform

» Transformation of continuous-time signal into continuous-frequency
complex function

e Fourier transform

X(w) = /O:O x(t) exp (—jwt) dt( )
NS

e Inverse Fourier transform

1 [ .
x(t) = - /_OO X (w) exp (jwt) dw
(t € R)
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Fourier transform

> Notations for Fourier transform and inverse Fourier transform

> Fourier transform pair is denoted as

2(t) ¢— X (w)
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Fourier transform

> w : (Angular) frequency
> When X (w) is regarded as a complex function of variable w
— X (w): (Angular) frequency spectrum X ()]

— | X (w)| : Magnitude spactrum /\/\/\/\
— | X (w)|? : Power spectrum

— arg (X (w)) : Phase spectrum

> When X (w)is regarded as a complex scalar value at w

— | X (w)]|: Magnitude t X (w)
2, W

— | X (w)]": Power | X )!/;rg(X(w))

— arg (X (w)): Phase "R
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Discrete Fourier transform

> Definition

e Discrete Fourier transform

X[k] = ]:Z:x[n] exp( jQﬁ”)

ke{0,1,...,N —1}
* Inverse discrete Fourier transform

z[n] = §§X[k] exp (j 27}5”)

ne{01,...,N—1}
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Fourier transform for frequency analysis

» From engineering perspective, Fourier transform is frequency analysis of
temporal signal by decomposing it by amplitude and phase of sinewaves

> Inverse Fourier transform is waveform synthesis by generating temporal
signal from amplitude and phase of sinewaves

0.5 ' ' ' ' ‘ 40

[§®]
o

Power (dB)

Amplitude
<o

R’
S

I
<

0.5 ' ' ' ' ‘ ' ' '
0 0l 02 03 04 05 0 2000 4000 6000

Time (s) Frequency (Hz)
Temporal signal Spectrum
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Frequency response of LTI system

LTI system characteristics are fully described by frequency response

» By decomposing LTI system into sinewaves, input-output relationship can
be represented by change of amplitude and phase at each frequency.

» Amplitude change is called gain (or amplitude response), and phase change
is called phase shift (or phase response)

> Gain and phase shift for each frequency is called frequency response
/\/\/’ — _,\/\/
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Transfer function

> Input-output relationship represented by function of frequency is called
transfer function

> Transfer function H(w) at angular frequency w is written by gain G(w) and
phase shift exp (jé(w)) as

H(w) = G(w) exp (j0(w))

> Output of the system when input is complex sinewave exp (jwt) at angular
frequency W

Llexp(jwt)| = H(w) exp(jw?)

> Input signal and output signal are related by their spectrum X (w), Y (w)
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Transfer function

» Representing input-output relationship of LTI system by using Fourier
transform,

y(t) = Lla(t),

— )5 [ X ewlivas|

1 @)
=5 | X (w)L [exp(jwt)] dw )E exp(jwt)| = H(w) exp(jwt)
— % _O; X (w)H (w) exp(jwt)dw
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Transfer function

» Outputsignalis

1 ®.@)
— / Y (w) exp (jwt) dw
21 ) _ o

y(t) =

» By comparing with

=5 / X (w)H (w) exp (jwt) dw

we can obtain

Output signal of LTI system is multiplication of
input signal and transfer function in the frequency domain




SAMPLING THEOREM
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Sampling

» By discretizing continuous-time signal in the temporal axis, which is called
sampling, discrete-time signal is obtained

> Time interval of sampling T is called sampling period, and its inverse 1/T
iIs called sampling frequency

> Discrete-time signal z|n| is written as

@)

z[n] =x(nT) = Y  x(t)6(t —nT)

n=—oo

Mw\ /Analog signal
WDigital signal

0 012 0.‘4 0‘.6 018 i 112 1.‘4 1.‘6 118
t
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Sampling theorem

» Sampling theorem

— When the upper limit of the frequency band of Fourier transform X (w) of
continuous-time signal z(t) is wo = 27 fo , continuous-time signal x () is
perfectly reconstructed from discrete-time signal x|n] of sampling frequency
2 fo or above

— Corresponding to the condition that aliasing does not occur, sampling frequency
must satisfy f
Js

fo<—

— Half of the sampling frequency is called Nyquist frequency
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Sampling theorem

> Irradiating flash lamp to periodic waterdrop from faucet

3,

6

T'=0.5s
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Sampling theorem

> Irradiating flash lamp to periodic waterdrop from faucet

3,

6

1T'=1.0s
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Sampling theorem

> Irradiating flash lamp to periodic waterdrop from faucet

3,

6

T =1.5s
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Sampling theorem

> Irradiating flash lamp to periodic waterdrop from faucet

.

T =0.5s T =1.0s

HASEZSRE, "SEF AT« 7, 2074, 2017.

Direction of waterdrop is indistinctive

when interval of irradiation is large



Sampling theorem

> Suppose sinewave of 1 sec of period (1 Hz of frequency)

1 period of signal

fs =4 Hz
fs =2 Hz
fs=4/3Hz
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Relationship between continuous and discrete signals

> Relationship between continuous-time and discrete-time signals in the
frequency domain

p(wT) / Z 0(t —nT)exp(—jwt)dt <= ZC(t) = LL‘(TLT)

n=—oo

:/ Z d(t — nT) exp(—jwt)dt
—0 n=—00 ) Convolution and multiplication

—%XA( *.F[ i o(t —nT)

n=—00 ) Fourier transform of delta sequence

1 Y
:%XA *%25(w——n>
n=—00 , ) Definition of convolution
/ Xa(€ Z 5(w—%n—§>df

n=-—00 ) Definition of delta function

1 2
 — Q 2
o oot 5 (22

T T T

n=—oo
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Relationship between continuous and discrete signals

> Xp(Q) is shifted sum of Xa(w)atintervals of 2x/T
Frequency band of t Xa(w)

continuous-time signal /\”‘\
W

Case of sufficiently [ Corllgvr?ll(ution V\éith
comb-like spectrum
small T » Xp(Q) p

—om)T o /T %

Case of large T' Xp(Q) @m leakage]
D
Mm

. ~ . L . o . o~
. . & . . &
. & . . & .

- - - - Aol
» » » » »
* * * * * * * *

An /T —2r)T on/T  4n)T %
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Sampling theorem, again

» Sampling theorem

— When the upper limit of the frequency band of Fourier transform X (w) of
continuous-time signal z(t) is wo = 27 fo , continuous-time signal x () is
perfectly reconstructed from discrete-time signal x|n] of sampling frequency
2 fo or above

— Corresponding to the condition that aliasing does not occur, sampling frequency
must satisfy f
Js

fo<—

— Half of the sampling frequency is called Nyquist frequency
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Sampling theorem

> Relationship between continuous-time signal z(¢) with band limitation
(—7/T < w < 7/T)and discrete-time signal z|n] in the time domain

1 oo
z(t) = 2—/ Xa(w) exp(jwt)dw
T J 00
1 /T Band limitation

— Xa(w)exp(jwt)dw
2m —7/T

1 T (Q) ( 0O ) ) Change of variable () = T
orT J_ T T ) Because of band limitation

I Q 1 0
— 27‘(‘—T o TXD (Q) exp ( T ) dQ2 XD<Q) — TXA (T)
1 [" , Q
i Lgoox[n] exp(—jdn) | exp ( T ) dQ2

=S {2 [ el (L) ao]

oo

n=—oo

November 19, 2024 Nn=—00 m (T B n) 46



Sampling theorem

» Band-limited continuous-time signal z(?) is perfectly reconstructed by
convolution of discrete-time signal x[n| and sinc function

(1) f: 2[n] sinc :w (% _ n>

n=——aoo

, 7t
= x|n| * sinc <T> m) Sinc interpolation

— For perfect reconstruction, discrete-time signal £[n]| must be defined in n € Z

— Difficult in practice, but well approximated by truncation because of rapid attenuation
of sinc function
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Reconstruction from discrete-time signal

» Sampling of continuous-time signal

14

0 0.2 0.4 0.6 0.8 1 12 1.4 1.6 1.8
t

» Reconstruction of continuous-time signal by sinc interpolation

3,
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