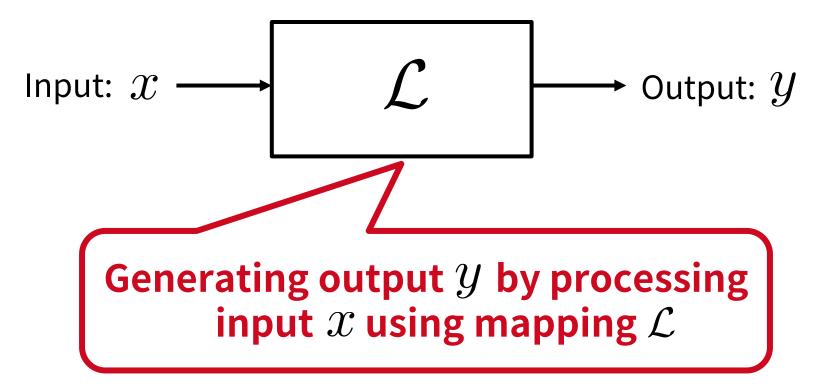
メディア処理基礎 / Fundamentals of Media Processing Fundamentals of Signal Processing Part 1

小山 翔一 / Shoichi Koyama 国立情報学研究所 / 総合研究大学院大学 准教授 Associate Professor, National Institute of Informatics / SOKENDAI

What is Signal Processing?

Techniques for analyzing, modifying, and synthesizing signals, such as sound, images, and others

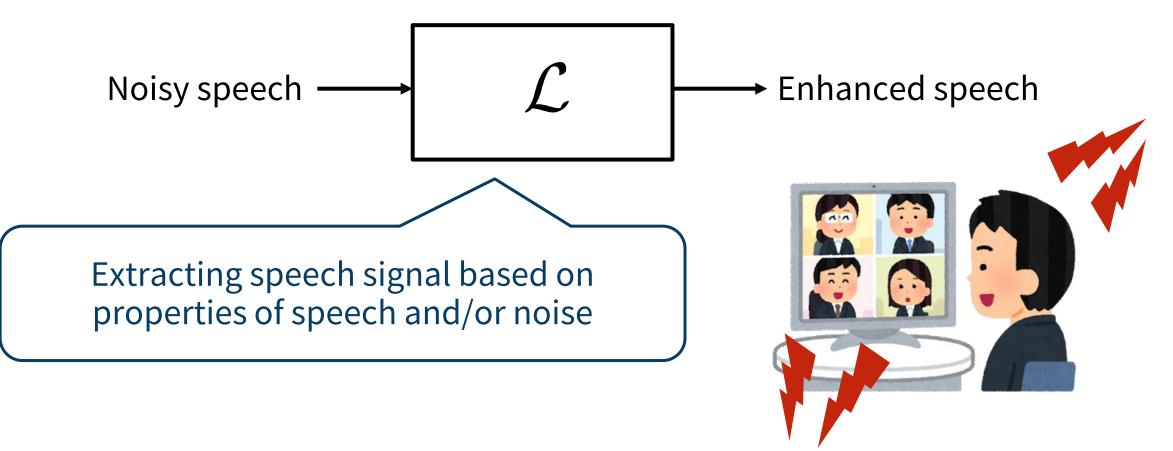


See also https://youtu.be/R90ciUoxcJU

What is Signal Processing?

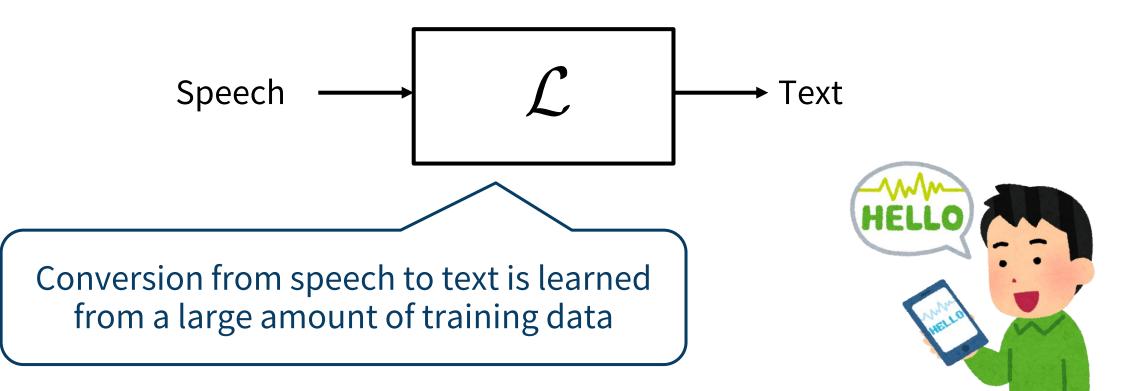
> Noise reduction

- Input: speech contaminated by noise
- Output: enhanced speech by reducing noise



What is Signal Processing?

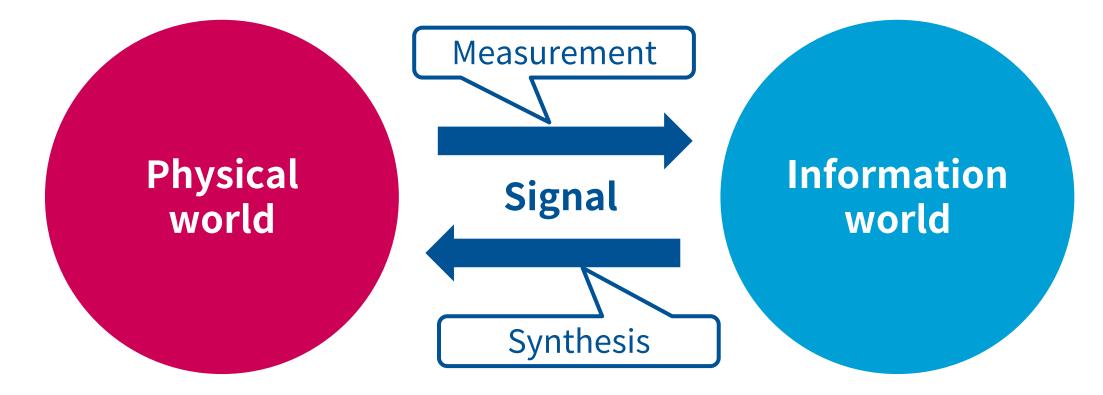
- > Speech recognition
 - Input: Human's speech
 - Output: Spoken text



SIGNAL AND LINEAR TIME-INVARIANT SYSTEM

Signal

- Signal is temporal/spatial variations of physical quantities obtained by sensors or their representation by symbols
 - Speech, music, image, video, ultrasonic sonar, radiowave, brainwave, seismic wave, stock price, etc.



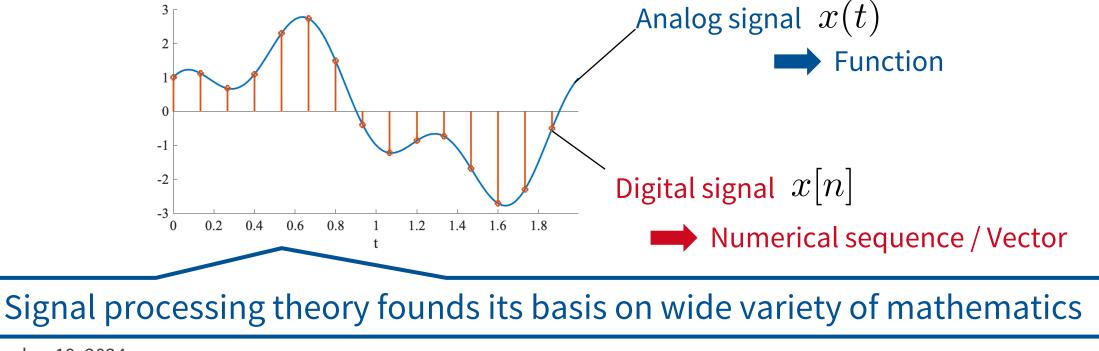
Signal

- Signal used in this class is time-series signal: one-dimensional signal of amplitude variation changing with time
 - Continuous-time signal / Analog signal:

Continuous value of time and amplitude

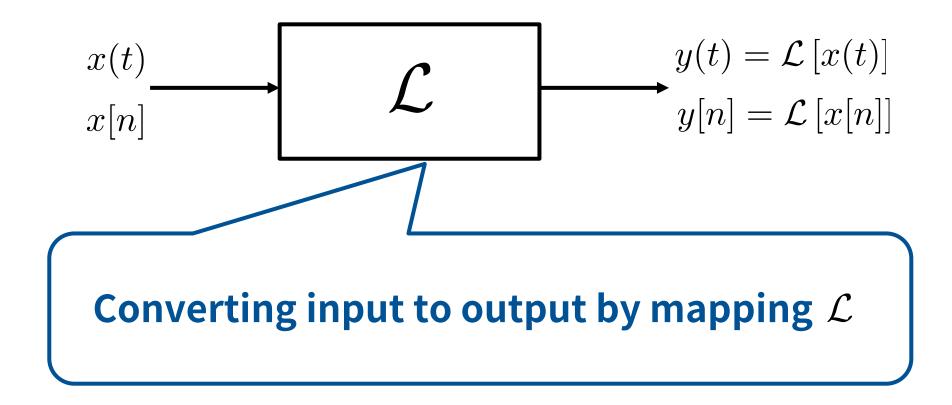
- Discrete-time signal / Digital signal:

Discrete value of time and quantized value of amplitude



System

System: Representation of signal processing stages and input-output characteristics



Linear time-invariant system

- Focusing on linear time-invariant (LTI) system
- > Linearity:
 - Superposition principle holds

$$\mathcal{L}\left[\alpha x[n] + \beta y[n]\right] = \alpha \mathcal{L}\left[x[n]\right] + \beta \mathcal{L}\left[y[n]\right]$$

 $\forall \alpha,\beta \in \mathbb{C}$

> Time-invariance / Shift-invariance:

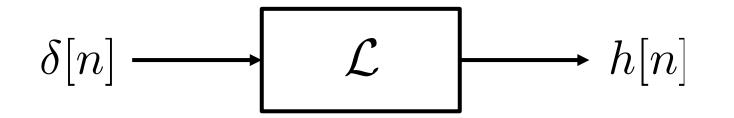
System is consistent with time change

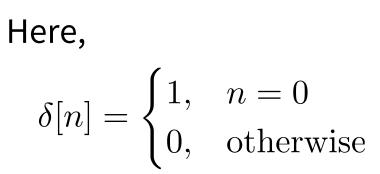
$$y[n] = \mathcal{L}[x[n]] \Rightarrow y[n-m] = \mathcal{L}[x[n-m]], \forall m$$

Input-output characteristics of LTI system can be decomposed into basic elements for analysis

- Definition of impulse response
 - Output of LTI system h[n] when input is delta function $\delta[n]$

$$h[n] = \mathcal{L}\left[\delta[n]\right]$$





LTI system characteristics are fully described by impulse response

When impulse response of LTI system is h[n], input signal x[n] and output signal y[n] have the following relationship:

$$y[n] = h[n] * x[n] = \sum_{m=-\infty}^{\infty} h[m]x[n-m]$$

– This operation is called **convolution**

Output signal of any input signal for LTI system can be computed if its impulse response is known

> Arbitrary signal is written by weighted sum of delta function

$$x[n] * \delta[n] = \sum_{m=-\infty}^{\infty} x[m]\delta[n-m] \left(= \sum_{m=-\infty}^{\infty} \delta[m]x[n-m] \right)$$
$$= \dots + x[n-1]\delta[1] + x[n]\delta[0] + x[n+1]\delta[-1] + \dots$$
$$= x[n]$$

➤ Thus,

$$y[n] = \mathcal{L} [x[n]]$$

$$= \mathcal{L} \left[\sum_{m=-\infty}^{\infty} x[m] \delta[n-m] \right]$$

$$= \sum_{m=-\infty}^{\infty} x[m] \mathcal{L} [\delta[n-m]]$$

$$= \sum_{m=-\infty}^{\infty} x[m] h[n-m]$$

$$= x[n] * h[n]$$
Equation above
$$x[m] \text{ does not depend on } n$$

In continuous case, input signal x(t) and output signal y(t) are related by convolution with impulse response of LTI system h(t)

$$y(t) = h(t) * x(t) = \int_{-\infty}^{\infty} h(\tau) x(t-\tau) d\tau$$

> Impulse response h(t) is output of LTI system when input is delta function $\delta(t)$

$$h(t) = \mathcal{L}[\delta(t)]$$
where
$$\delta(t) = \begin{cases} \infty, & t = 0 \\ 0, & t \neq 0 \end{cases}$$
Not strictly correct representation

Convolution

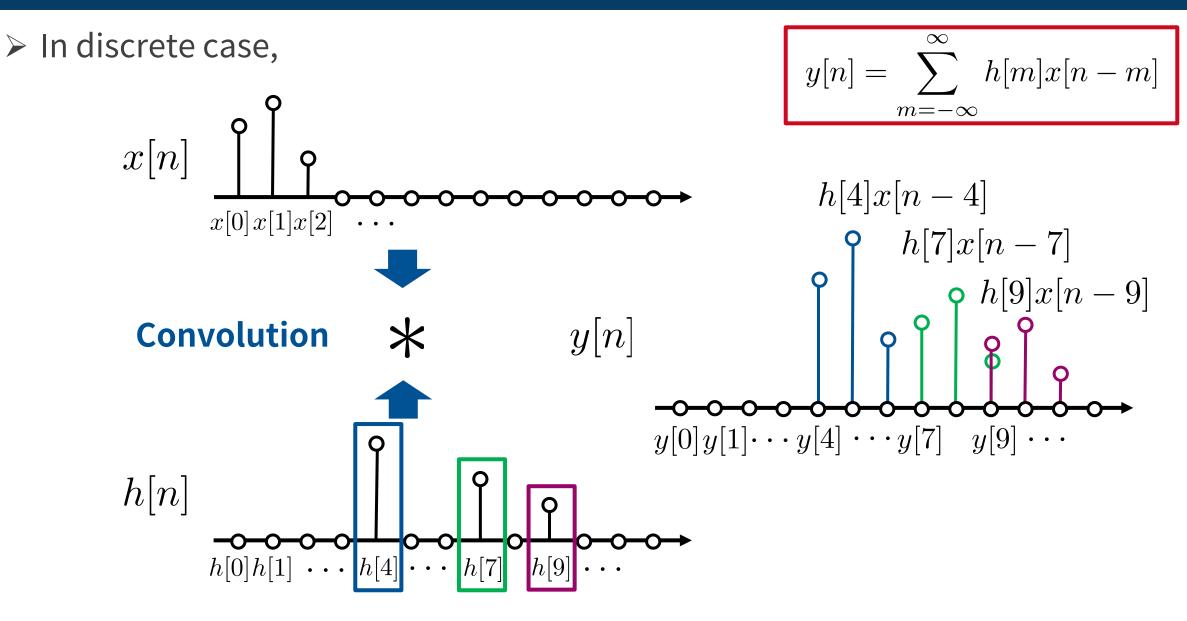
- Convolution is operation to obtain function/sequence from two functions/sequences
 - Continuous system:

$$y(t) = h(t) * x(t) = \int_{-\infty}^{\infty} h(\tau)x(t-\tau)d\tau$$
$$= \int_{-\infty}^{\infty} h(t-\tau)x(\tau)d\tau$$

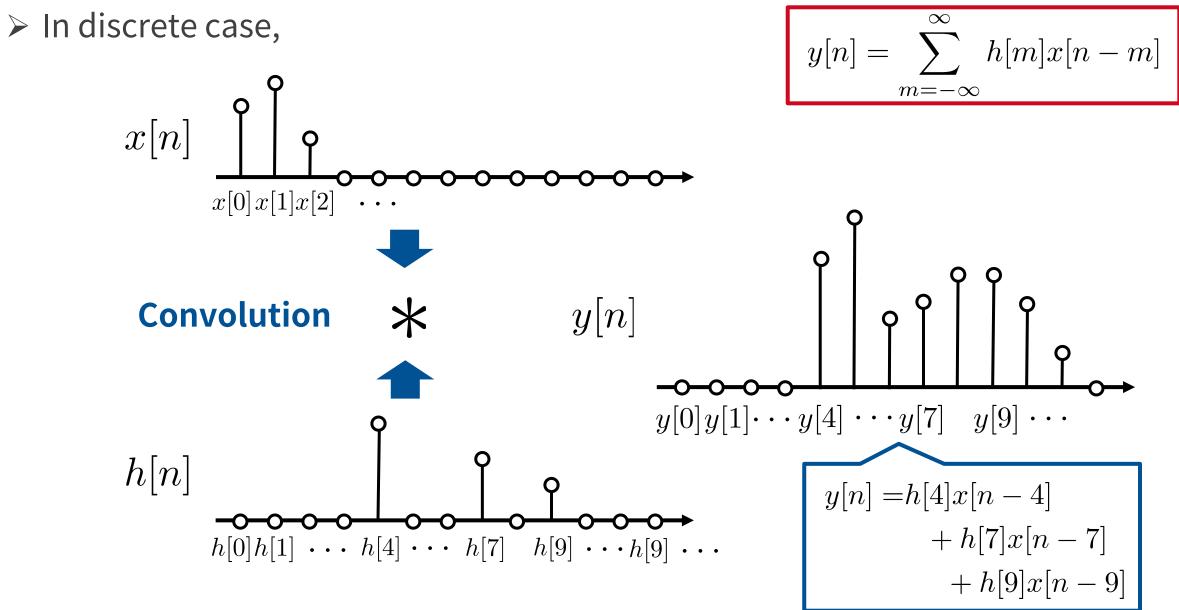
– Discrete system:

$$y[n] = h[n] * x[n] = \sum_{m=-\infty}^{\infty} h[m]x[n-m]$$
$$= \sum_{m=-\infty}^{\infty} h[n-m]x[m]$$

Convolution

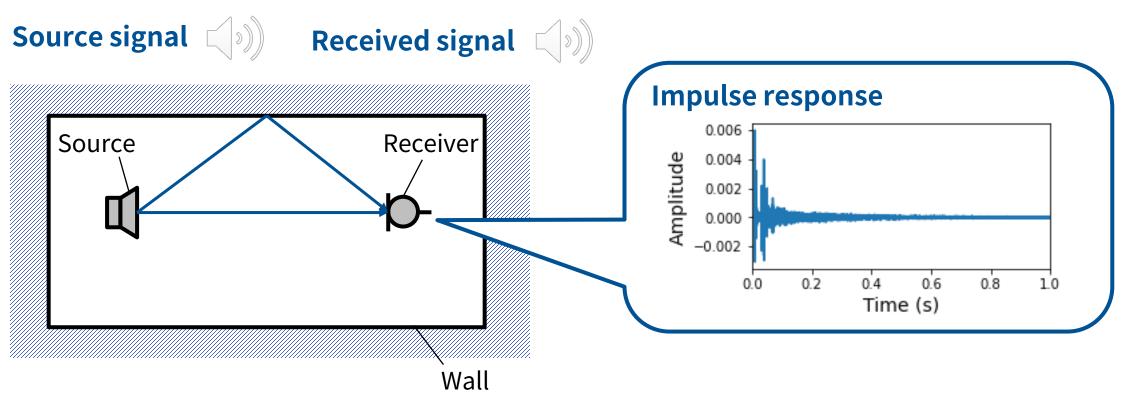


Convolution



Convolution in acoustic signal processing

- Transfer characteristics from source (loudspeaker) to receiver (microphone) can be regarded as LTI system
 - If impulse response is measured or predicted in advance, signal at the receiver position from any source signal can be computed
 - Here, impulse response represents characteristics of sound reflections at walls



FOURIER TRANSFORM

Fourier series expansion

Expansion representation by approximating signal by linear combination of sinusoidal signals

Fourier series expansion

Orthogonal basis expansion of continuous-time periodic signal x(t) with period of T

$$x(t) = \sum_{k=-\infty}^{\infty} c_k \exp\left(j\frac{2\pi kt}{T}\right)$$

Complex sine-wave $e^{j\varphi} = \cos\varphi + j\sin\varphi$
 $c_k = \frac{1}{T} \int_{-T/2}^{T/2} x(t) \exp\left(-j\frac{2\pi kt}{T}\right) dt$ (Fourier coefficient

Here,

Fourier series expansion

Another representation of Fourier series expansion

Fourier series expansion (represented by trigonometric functions)

Orthogonal basis expansion of continuous-time periodic signal x(t) with period of T

 $\mathrm{d}t$

$$x(t) = a_0 + \sum_{k=1}^{\infty} a_k \cos\left(\frac{2\pi kt}{T}\right) + \sum_{k=1}^{\infty} b_k \sin\left(\frac{2\pi kt}{T}\right)$$

Here,

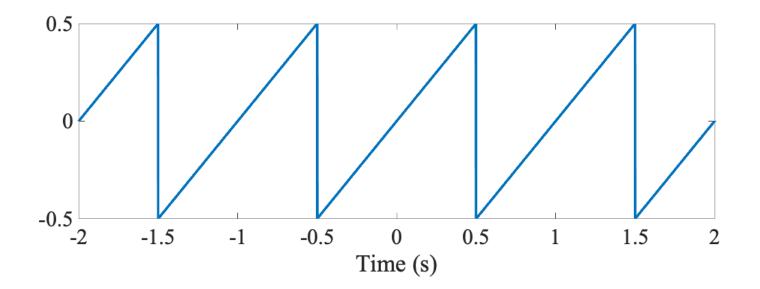
$$a_{0} = \frac{1}{T} \int_{-T/2}^{T/2} x(t) dt$$
$$a_{k} = \frac{2}{T} \int_{-T/2}^{T/2} x(t) \cos\left(\frac{2\pi}{T}\right)^{T/2} dt$$

$$b_k = \frac{2}{T} \int_{-T/2}^{T/2} x(t) \sin\left(\frac{2\pi kt}{T}\right) dt$$

Example

> Saw wave

$$x(t) = \begin{cases} t - p, & \left(p - \frac{1}{2}\right)T \le t \le \left(p + \frac{1}{2}\right)T & \left(p \in \mathbb{Z}\right)\\ 0, & \text{otherwise} \end{cases}$$



Example

$$a_{0} = \frac{1}{T} \int_{-T/2}^{T/2} x(t) dt = \frac{1}{T} \int_{-T/2}^{T/2} t dt = 0$$

$$a_{k} = \frac{2}{T} \int_{-T/2}^{T/2} x(t) \cos\left(\frac{2\pi kt}{T}\right) dt = \frac{2}{T} \int_{-T/2}^{T/2} t \cos\left(\frac{2\pi kt}{T}\right) dt = 0$$

$$b_{k} = \frac{2}{T} \int_{-T/2}^{T/2} x(t) \sin\left(\frac{2\pi kt}{T}\right) dt = \frac{2}{T} \int_{-T/2}^{T/2} t \sin\left(\frac{2\pi kt}{T}\right) dt$$

$$= \frac{2}{T} \left\{ -\frac{T}{2\pi k} t \cos\left(\frac{2\pi kt}{T}\right) \right|_{-T/2}^{T/2} + \frac{T}{2\pi k} \int_{-T/2}^{T/2} \cos\left(\frac{2\pi kt}{T}\right) dt \right\}$$

$$= -\frac{T}{\pi k} \cos(\pi k)$$

$$x(t) = \sum_{k=1}^{\infty} \left\{ -\frac{T}{\pi k} \cos(\pi k) \sin\left(\frac{2\pi kt}{T}\right) \right\}$$

$$= \frac{T}{\pi} \sin\left(\frac{2\pi t}{T}\right) - \frac{T}{2\pi} \sin\left(\frac{4\pi t}{T}\right) + \cdots$$

Example



From Fourier series to Fourier transform

- Fourier series expansion
 - Aimed at approximating signal
 - Only for periodic signals
 - By constraint of periodic signals, signal having uncountably many (i.e., continuous) degrees of freedom is represented by countably many basis functions
 - x(t) and $(c_k)_{k \in \mathbb{Z}}$ are equivalent information if the series converges
 - Just a difference in perspective

$$x(t) = \sum_{k=-\infty}^{\infty} c_k \exp\left(j\frac{2\pi kt}{T}\right)$$

From Fourier series to Fourier transform

- > Extension of Fourier series expansion to aperiodic signals
 - Replacing with $\Delta \omega = 2\pi/T, \; \omega_k = 2\pi k/T$

Fourier transform

Transformation of continuous-time signal into continuous-frequency complex function

> • Fourier transform $X(\omega) = \int_{-\infty}^{\infty} x(t) \exp(-j\omega t) dt$ $(\omega \in \mathbb{R})$ **Inverse Fourier transform** $x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(\omega) \exp\left(j\omega t\right) d\omega$ $(t \in \mathbb{R})$

Fourier transform

Notations for Fourier transform and inverse Fourier transform

$$\mathcal{F}[x(t)] = X(\omega)$$

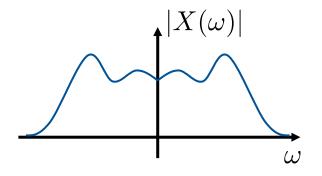
$$\mathcal{F}^{-1}[X(\omega)] = x(t)$$

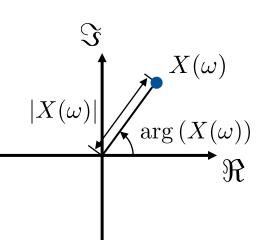
Fourier transform pair is denoted as

$$x(t) \xleftarrow{\mathrm{FT}} X(\omega)$$

Fourier transform

- $\succ \omega$: (Angular) frequency
- \succ When $X(\omega)$ is regarded as a complex function of variable ω
 - $-X(\omega)$: (Angular) frequency spectrum
 - $-|X(\omega)|$: Magnitude spactrum
 - $-|X(\omega)|^2$: Power spectrum
 - $\arg (X(\omega))$: Phase spectrum
- \succ When $X(\omega)$ is regarded as a complex scalar value at ω
 - $-|X(\omega)|$: Magnitude
 - $-|X(\omega)|^2$: Power
 - $\arg \left(X(\omega) \right)$: Phase





Discrete Fourier transform

Definition

• Discrete Fourier transform

$$X[k] = \sum_{n=0}^{N-1} x[n] \exp\left(-j\frac{2\pi kn}{N}\right)$$

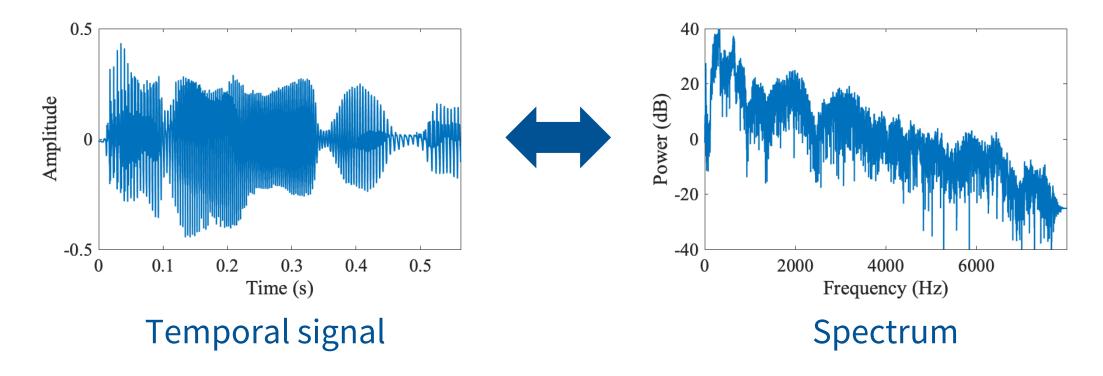
$$k \in \{0, 1, \dots, N-1\}$$
• Inverse discrete Fourier transform

$$x[n] = \frac{1}{N} \sum_{k=0}^{N-1} X[k] \exp\left(j\frac{2\pi kn}{N}\right)$$

$$n \in \{0, 1, \dots, N-1\}$$

Fourier transform for frequency analysis

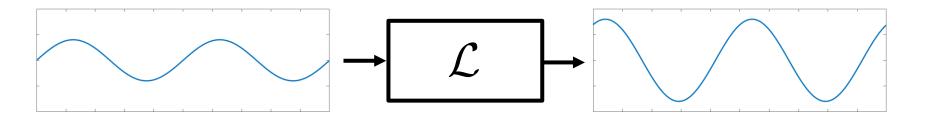
- From engineering perspective, Fourier transform is frequency analysis of temporal signal by decomposing it by amplitude and phase of sinewaves
- Inverse Fourier transform is waveform synthesis by generating temporal signal from amplitude and phase of sinewaves



Frequency response of LTI system

LTI system characteristics are fully described by frequency response

- By decomposing LTI system into sinewaves, input-output relationship can be represented by change of amplitude and phase at each frequency.
- Amplitude change is called gain (or amplitude response), and phase change is called phase shift (or phase response)
- Gain and phase shift for each frequency is called frequency response



Transfer function

- Input-output relationship represented by function of frequency is called transfer function
- > Transfer function $H(\omega)$ at angular frequency ω is written by gain $G(\omega)$ and phase shift $\exp(j\theta(\omega))$ as

$$H(\omega) = G(\omega) \exp\left(j\theta(\omega)\right)$$

Output of the system when input is complex sinewave exp (jωt) at angular frequency ω

$$\mathcal{L}[\exp(\mathbf{j}\omega t)] = H(\omega)\exp(\mathbf{j}\omega t)$$

> Input signal and output signal are related by their spectrum $X(\omega), Y(\omega)$

$$Y(\omega) = H(\omega)X(\omega)$$

Transfer function

Representing input-output relationship of LTI system by using Fourier transform,

$$y(t) = \mathcal{L}[x(t)]$$

$$= \mathcal{L}\left[\frac{1}{2\pi} \int_{-\infty}^{\infty} X(\omega) \exp(j\omega t) d\omega\right]$$

$$= \frac{1}{2\pi} \int_{-\infty}^{\infty} X(\omega) \mathcal{L}\left[\exp(j\omega t)\right] d\omega$$

$$= \frac{1}{2\pi} \int_{-\infty}^{\infty} X(\omega) H(\omega) \exp(j\omega t) d\omega$$

$$\mathcal{L}\left[\exp(j\omega t)\right] = H(\omega) \exp(j\omega t)$$

Transfer function

Output signal is

$$y(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} Y(\omega) \exp(j\omega t) d\omega$$

> By comparing with

$$y(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(\omega) H(\omega) \exp(j\omega t) d\omega$$

we can obtain

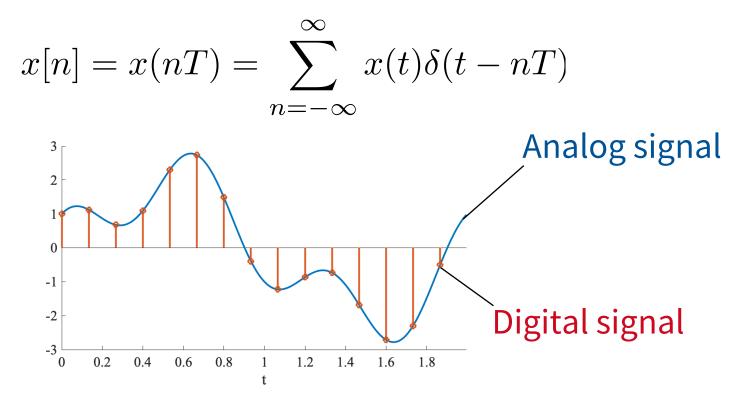
$$Y(\omega) = H(\omega)X(\omega)$$

Output signal of LTI system is multiplication of input signal and transfer function in the frequency domain

SAMPLING THEOREM

Sampling

- By discretizing continuous-time signal in the temporal axis, which is called sampling, discrete-time signal is obtained
- Time interval of sampling T is called sampling period, and its inverse 1/T is called sampling frequency
- \succ Discrete-time signal x[n] is written as



Sampling theorem

- When the upper limit of the frequency band of Fourier transform $X(\omega)$ of continuous-time signal x(t) is $\omega_0 = 2\pi f_0$, continuous-time signal x(t) is perfectly reconstructed from discrete-time signal x[n] of sampling frequency $2f_0$ or above
- Corresponding to the condition that aliasing does not occur, sampling frequency must satisfy $f_{\rm s}$

$$f_0 \le \frac{f_s}{2}$$

– Half of the sampling frequency is called Nyquist frequency

> Irradiating flash lamp to periodic waterdrop from faucet

 $T = 0.5 \, \mathrm{s}$

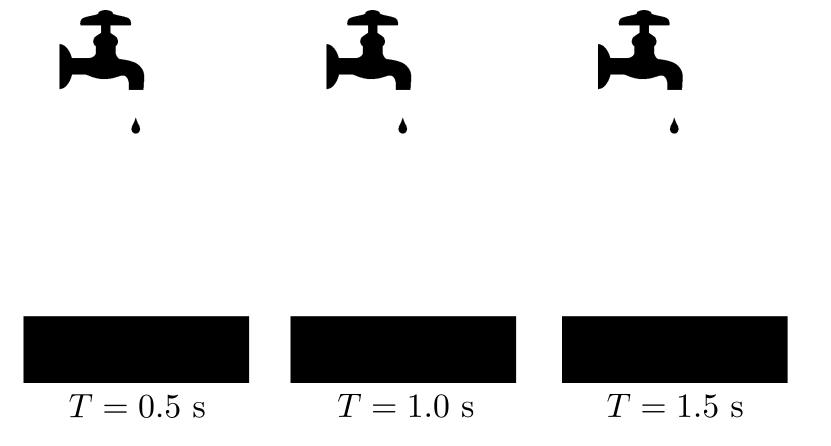
> Irradiating flash lamp to periodic waterdrop from faucet

 $T = 1.0 \, \mathrm{s}$

> Irradiating flash lamp to periodic waterdrop from faucet

 $T = 1.5 \, \mathrm{s}$

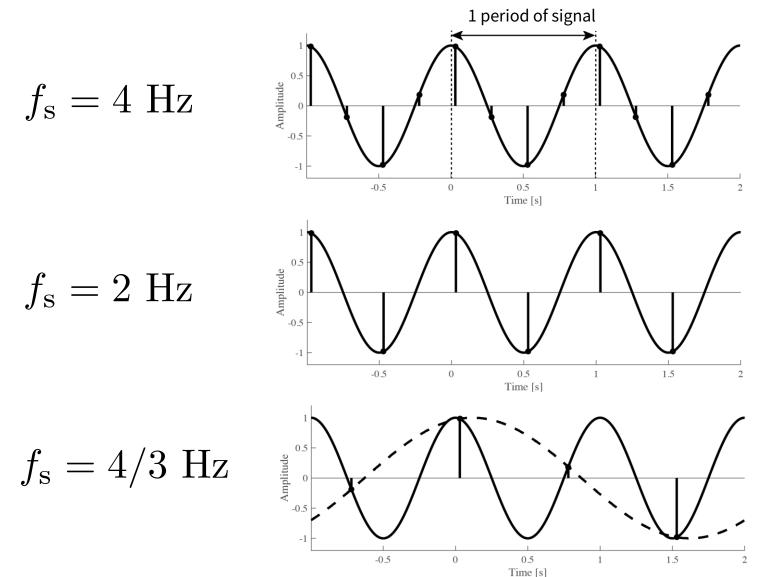
Irradiating flash lamp to periodic waterdrop from faucet



日本音響学会編,"音響学入門ペディア,"コロナ社,2017.

Direction of waterdrop is indistinctive when interval of irradiation is large

Suppose sinewave of 1 sec of period (1 Hz of frequency)



Relationship between continuous and discrete signals

Relationship between continuous-time and discrete-time signals in the frequency domain

$$X_{\rm D}(\omega T) = \int_{-\infty}^{\infty} \sum_{n=-\infty}^{\infty} x(t)\delta(t-nT)\exp(-j\omega t)dt \qquad x(t) = x(nT)$$

$$= \int_{-\infty}^{\infty} x(t) \sum_{n=-\infty}^{\infty} \delta(t-nT)\exp(-j\omega t)dt \qquad \text{Convolution and multiplication}$$

$$= \frac{1}{2\pi}X_{\rm A}(\omega) * \mathcal{F}\left[\sum_{n=-\infty}^{\infty} \delta(t-nT)\right] \qquad \text{Fourier transform of delta sequence}$$

$$= \frac{1}{2\pi}X_{\rm A}(\omega) * \frac{2\pi}{T} \sum_{n=-\infty}^{\infty} \delta\left(\omega - \frac{2\pi}{T}n\right)$$

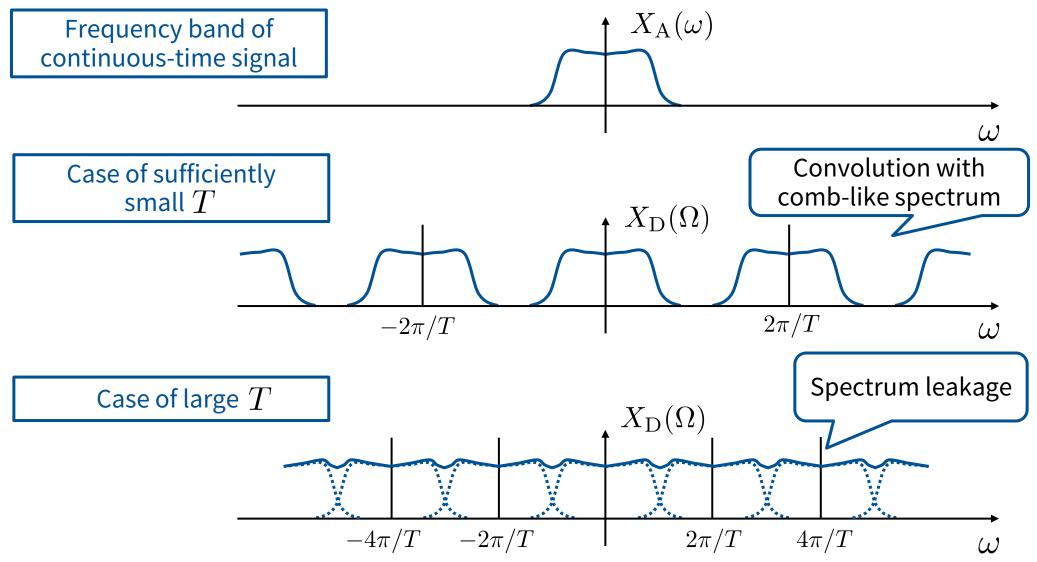
$$= \frac{1}{T}\int_{-\infty}^{\infty} X_{\rm A}(\xi) \sum_{n=-\infty}^{\infty} \delta\left(\omega - \frac{2\pi}{T}n - \xi\right) d\xi \qquad \text{Definition of convolution}$$

$$= \frac{1}{T} \sum_{n=-\infty}^{\infty} X_{\rm A}\left(\omega - \frac{2\pi}{T}n\right)$$

$$\Rightarrow X_{\rm D}(\Omega) = \frac{1}{T} \sum_{n=-\infty}^{\infty} X_{\rm A}\left(\frac{\Omega}{T} - \frac{2\pi}{T}n\right)$$

Relationship between continuous and discrete signals

$> X_{\rm D}(\Omega)$ is shifted sum of $X_{\rm A}(\omega)$ at intervals of $2\pi/T$



Sampling theorem, again

Sampling theorem

- When the upper limit of the frequency band of Fourier transform $X(\omega)$ of continuous-time signal x(t) is $\omega_0 = 2\pi f_0$, continuous-time signal x(t) is perfectly reconstructed from discrete-time signal x[n] of sampling frequency $2f_0$ or above
- Corresponding to the condition that aliasing does not occur, sampling frequency must satisfy $f_{\rm s}$

$$f_0 \le \frac{f_s}{2}$$

– Half of the sampling frequency is called Nyquist frequency

► Relationship between continuous-time signal x(t) with band limitation $(-\pi/T < \omega < \pi/T)$ and discrete-time signal x[n] in the time domain

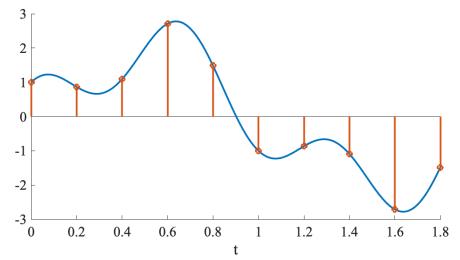
Band-limited continuous-time signal x(t) is perfectly reconstructed by convolution of discrete-time signal x[n] and sinc function

$$x(t) = \sum_{n = -\infty}^{\infty} x[n] \operatorname{sinc} \left[\pi \left(\frac{t}{T} - n \right) \right]$$
$$= x[n] * \operatorname{sinc} \left(\frac{\pi t}{T} \right) \implies \operatorname{Sinc} \operatorname{interpolation}$$

- For perfect reconstruction, discrete-time signal x[n] must be defined in $n\in\mathbb{Z}$
- Difficult in practice, but well approximated by truncation because of rapid attenuation of sinc function

Reconstruction from discrete-time signal

Sampling of continuous-time signal



Reconstruction of continuous-time signal by sinc interpolation

