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What is Signal Processing?

» Techniques for analyzing, modifying, and synthesizing signals, such as
sound, images, and others

Input: & — L: — QOutput: Y

Generating output Y by processing
input X using mapping L

See also https://youtu.be/R90ciUoxcJU
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From deterministic to statistical sighal processing

> Asignalis considered to be deterministic in the classical signal processing

> In statistical signal processing, the observed signal is considered to be a
stochastic process, i.e., random signal

=) Gain insight into statistical property of signals
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From deterministic to statistical signal processing

> Basic concept of statistical inference

Sample distribution

Observation

Sample variance -

Inference

Sample average

Population

Population

Population average

Estimating some amounts of statistics of population

variance

(e.g., population average/variance) from observed samples




BASICS OF STATISTICS/STOCHASTIC PROCESS
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Probability density function

> Random variable X taking continuous value holds

b
Pla<X<b)= | f(x)dx
/\ a
[Probability that random variable X takes the value of [a, b] ]

» f(z) is called probability density function (or p.d.f.) of X satisfying

f@zo and [

> Cumulative distribution function is probabilityof X < x

F(a:):P(XSx):/_x f(u)du
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Expected value and Variance

> Expected value E[X]and variance V|X]are given by

Expected value: E[X] :/ rf(zr)d

Variance: VIX]=E[(X — pn)? = / (z — p)? f(z)dz

— OO

where pu = E|X]|

> Relationship between expected value and variance

V[X] = E[(X — p)°] = E[X"] - B[X]*
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Skewness and Kurtosis

> Skewness and Kurtosis are also statistics to characterize p.d.f.
> Skewness: measure for asymmetric diversity of p.d.f

> Kurtosis: measure for flatness of p.d.f.

i4]5[(?( —)*] = i4 /OO (x — p)* f(z)da

o 0% J_ oo

> In general, moment of 7ith order is defined as
El(x —p)"

Shape of p.d.f. is determined if all moments are determined




Normal distribution (Gaussian distribution)
> P.d.f. of normal distribution of mean fand variance o

1) = e (-0

= N (z; p, 0°)

[Random variable X follows normal distribution » X ~ N(:B; L, 02)}

> Useful for modeling various phenomena (central limit theorem)
» Normal distribution is determined only by 1st- and 2nd-order moments

» P.d.f. having larger skewness than normal distribution is called super-
Gaussian function, and having less skewness is sub-Gaussian function
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Multivariate distribution

> Consider joint probability distribution for more than one random variables

> Joint probability density function f(z,y) for random variables X and Y
satisfies

d b
PasX<besy<d= [ [ faydy

» Marginalization means eliminating one variable by integration of joint p.d.f.

ow)= [ sy, he) = / " fla,y)da
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Multivariate distribution

> In multivariate case, random variables are sometimes represented by

vectors
> Representing N random variables by column vector & = [z1,...,zn]"
» Mean:
p = Elx]
= [Bla],..., Elzn]]’
= |y, -aﬂN]

» Covariance matrix:

S =Elz—p)(z—p)
- E[(z1 — )7 o Bl(rr — ) (N — )]

Eley — )@ — )] - Ellex — )
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Multivariate normal distribution

> P.d.f. of Ndimensional normal distribution:

@) = sy @ (5@ - W= @ - )

=N(z; p, %)

» Vector of random variables & following normal distribution is represented as

z ~ N(z; p, X)
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Statistics of random signal

> If statistical properties of signal is constant irrespective of time, that signal is
called stationary signal. If not, that signal is called non-stationary signal.

— Weakly stationary: Mean and variance of signal are constant irrespective of time

— Strongly stationary: Higher-order statistics (including skewness and kurtosis),
l.e., p.d.f of signal, are constant irrespective of time
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Statistics of random signal

> Statistics of stationary signal x(t)

— Ensemble mean:

— Autocorrelation function:

R(r) = Ela(t + 7)a(t)] = / r1af (21, w9 7)

— Crosscorrelation function:

Ray(7) = E[z(t + 7)y(t)] = Ryo(—7)

— Autocovariance function:

C(r) = El(z(t + 1) —n)(z(t) — n)] = R(1) — n*

— Crosscovariance function:

= Bl(z(t +7) = n:)(y(t) = 1y)] = Ray () = 127y

Coy(T)
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u=FElz(t)] = /_OO x f(x)dx Dependent only on
time difference
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Statistics of random signal

> Time average:

> Ergodicity:
— When time average and ensemble mean of stationary signal are equal, the signal
has ergodicity

— Stationary signal does not necessarily have ergodicity
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Statistics of random signal

> Uncorrelated
Elz(t1)y(t2)] = Elz(t)|Ely(t2))

> Independent

foy(@,y5t1,t2) = fa(xste) fy(y; t2)

» Independent signals are uncorrelated, but uncorrelated signals are not
necessarily independent
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Example: direction-of-arrival estimation

> Estimating direction of sound source by using two mics based on time
difference estimation

[

/ s1(t) = x(t — 70) + na(?)
- Sg(t)

Arrival J

Distance
difference

direction 70 = D sin (9/6
Dsin 6 f
— Peak of crosscorrelation function
Pair of mics with corresponds to 79

interval of D

Ria(7) = Els1(t + 7)s2(t)]
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STATISTICAL MODEL AND ESTIMATION
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Parameter estimation

> Suppose to estimate unknown parameter = = [z1,...,zx]" € R from
observed signal ¥ = [y1,--.,ym]' € RM (M > N)

> Three representative parameter estimation methods (w/ p.d.f. p(+))
— Maximum likelihood (ML) estimation:

maximize p(y; )
£

— Maximum a posteriori (MAP) estimation:

maximize p(x; y)
£

— Minimum mean-square error (MMSE) estimation:

minimize E[||& — z||*; y|
X
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» Linear model is widely-used measurement model:
y=Ax

> A is matrix of M x N having real-valued elements (i.e., A € RM*M)
» Each elementis given by

(m,n)th element of A

Z—

N
Ym — E AmnLn
n=1

» Here, A isassumed to be given
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ML estimation

> Observation values x1,...,Z N are obtained as realization of random
variables X1,..., Xy by Nobservations

» In maximum likelihood principle, the measured observation is considered to
be realization of the maximum probability, i.e., the most likely occurrence

> P.d.f. that observation &', follows is denoted with paramater fof p.d.f. as
f(x,]0)
> When observed signals are independent and identically distributed (i.i.d.),

P(Xy=m1,..., Xy =2y) = || P(Xp = =)
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ML estimation

> Likelihood function £(8) is function of @ represented by p.d.f. of observed
signal

£(0) = I f(xal6)

» In ML estimation, estimate is given as @ such that likelihodd function is
maximized

f = arg max £(6)
7

> In many cases, log likelihood function (natural logarithm of L£(8)) is used

because of simplicity of computation
log is monotonically
increasing function
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ML estimation in linear model

> When additive noisen € R™ is superimposed on the observation,
y=Ax+n

> Noise is assumed to follow multivariate normal distribution of mean 0 and
variance 0%, i.e.,n ~ N(n;0,0%1)

o 1
p(n) — (27_‘_0_2)M/2 eXPp _ﬁHnH

> P.d.f. of observation P(¥)becomes

1 1 ,
) = i o (sl — Aa )
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ML estimation in linear model

» Suppose to infer & by ML estimation. Log likelihood function becomes

|
log L(z) = logp(y) = —55lly — Az[* +C

20
mot including LB]

& = arg min |ly — Ax|”
&

> ML solution & is obtained by solving

» Correspond to least-squares method that estimates unknown variable by
minimizing cost function of squared errors
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ML estimation in linear model

> By differentiating cost function by & and settingitto 0,
iHy — Az|® = 9 (y'y—z'A'ly—y' Az + " A" Az)
ox ox
——ATy— (yTA) +24T Az
=2 (—ATy -+ ATA:I:)

> Cf., differential formula for vectors

Ox'b B ob'x b
or  Ox
T
Ox' Bx _ (B+B")z

ox
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ML estimation in linear model

> Optimal solution & is

= (ATA) ATy

> In linear model, ML solution with Gauusian assumption for noise
corresponds to least-squares solution
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Bayesian estimation

> In Bayesian estimation, unknown variable & of linear model is also regarded
as random variable m# Main difference from ML estimation

> Based on Bayesian theorem, posterior probability ditribution, i.e., p.d.f. of Y
given I is represented as

play) = o LIS i a)p(a)

— where p(z) is prior distribution, and p(¥; ) is likelihood
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MAP estimation

> In MAP estimation, the estimate is obtained by

T = arg max p(x;y)

L > Bayesian theorem
= arg max p(y; z)p(x)

Zr

> When there is no prior information, p(x) becomes constant (non-informative
prior distribution), then, MAP estimate corresponds to ML estimate

> If prior distribution is conjugate prior of likelihood, posterior distribution can
be simply calculated. E.g., when both p(x) and p(y; ) are Gaussian, posterior
distribution p(x; ¥) also becomes Gaussian
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MAP estimation in linear model

» Assume Gaussian prior & ~ N (x;0,0:1)

_ 1 1 2
p(m) — (27_‘_0_%)]\]/2 eXPp _ﬁHwH

X

> MAP estimate is obtained as

& = arg min [— log p(x; y) — log p(x)]

T

. 1 1
_ argmin [—2Hy ~ Al + —QHwHZ]
T o) 0]

€T

Oz

T o> \ 7 T

mm) Corresponds to regularized least-squares solution
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MMSE estimation

» In MMSE estimation, expected value of square error between ground truth &
and estimate & is minimized to obtain the estimate

& = arg min E[||& — x||*]

T

» Suppose to estimate by using linear MMSE estimator Has ¢ = Hy
min}jr{nize El|Hy — z||*]

— Then, MMSE estimation is reduced to obtain the optimal H
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APPLICATION EXAMPLES OF
STATISTICAL ESTIMATION
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» Enhancing target source signal by multiple mics

Target source Linear measurement model
\* S y1(w)
Transfer function Yy(w) = : |
e (w)_ / Noise
‘M a1 (w) | - n(w) ]
Mics = : s(w) + :
/ an (W) v (w) ]
YY ---Y---Y = a(w)s(w) + n(w)

P.d.f. for noise: Complex Gaussian
n ~ N¢(n; 0, O‘2I)
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> Likelihood function
1

(yls) : | I°
— C ———|ly — as
P1s det(mo?1) P\ T2 1Y

» ML estimate of target source signal

§ = argmax p(y|s)
S

= argmax ||y — as||’
S

aHy

ala
mm) Corresponds to delay-and-sum beamformer
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Delay-and-sum beamformer

» Time-delay of each mic is compensated, then in-phase signals are summed
up to enhance sound from target direction
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Linear prediction

> Linear prediction: Predicting current signal value by linear combination of
past signal values

» When using L samples of past signal values,

#n] =) hn 1]

> Expected value of square prediction error Eis formulated as

Ep, = E|(z[n] - 2[n])"]

=F (az[n] — Z hixn — l])

# MMSE estimation to obtain h;
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Linear prediction

> Need to obtain coefficients h; so that E'ris minimized. Such coefficients are
obtained by setting differential of Ezby h; to

—2x[n — k ( Zhlmzﬂ

=2 Z hWE [xn — klxn —1]] — 2F [x|n — k]x|n]]

=0

OFET,

—~ _F
Ohy,

» By denoting autocorrelation function of x[n|as ¢[k] = ¢[—k] = E[z[n]z[n — k]
L
thw[l — k| = plk]
=1
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Linear prediction

> Matrix-vector representation

wl0] 1] elL =117 1, 1]
pll]  ¢[2] 5 ho | _ (2]
p[L—1] - 1] 5[0] | el Lelll]

» Optimal linear prediction coefficients are obtained by solving the above
equation, which is called Yule-Walker equations

> Since the left side is Toeplitz matrix, an efficient technique, which is called
Levinson—Durbin algorithm, can be used

> This signal model is also called auto-regressive (AR) model
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Speech generation model

» Vocal tract system

Vocal tract characteristics
— Spectral shape

s Opening-and-closing of vocal folds
J N — Cyclic pulse train

Speech can be modeled by convolution
of cyclic pulse trajn and vocal tract filter

Source-filter model
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Spectral envelope obtained
by linear prediction

—— FFT spectrum |
LP spectrum

Frequency (Hz)

Speech generation model

Residual error between original
speech and linear prediction

027

0.1 7

-0.1

-0.2

» Vocal tract characteristics is well approximated by linear prediction

— Signal |
Error

lHnHH

'vnvr””

0.02 0.04 006 0.08 01 0.12
Time (s)

Widely used for speech coding for data compression

(cf. code excited linear prediction coder: CELP)




Adaptive filter

> Objective of adaptive filter is to extract the desired signal by statistical
learning of observed signal

» Obtaining filter w = [w1, ..., wk]' sothat output signal ¥« of input uy
corresponds to the desired signal d

Yk AT
U, " W é))— €k
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Wiener filter

> Wiener filter: Applying MMSE estimation to adaptive filtering under the
constraint of linear estimator

> Filter coefficients and input signal vectors are defined as
w=[w,..., wr]"
-
U = [uk, Uk—1,--- auk—K—l—l]

> Then, filter convolution is described by inner product

-
Y — W Uk

K
— E WUk —i41
i=1
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Wiener filter

> Estimation error is represented by using known desired signal dgas

€ = dr — Yk
> Cost function for Wiener filter is defined as mean square error

J = Ellex|?]
= E [(dy, — w'uy)(dy — ’wTuk)T}
= E[d?] — w' Eluyd;] — Eldiu,Jw + w' Eluiu, |w
= afl —w' ' ryy — rg,w +w' R,w

gum—

O'CZZ = E[dz] , R E[uku—lg]
_’l"ud — [ukdk] — E[dkuk]

where S
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Wiener filter

> By differentiating cost function by w
o0J

a—w — 2(—rud —+ Ru'UJ)

> By setting the above derivative to 0, the following normal equation (or
Wiener—Hopf equation) is obtained

R, w=r17r,4

> Then, optimal filter is obtained as

’li? — R,L_Ll’l"ud

Adaptive algorithm is practically used for real-time adaptation




Speech enhancement

» Speech enhancement from noisy observation
> (Non-causal) Wiener filtering in frequency domain

! Power spectral density ]
S of original signal
W(w) = )

S(w) + N(w) Power spectral density J

SNR is estimated in of noise
non-speech section

\ Noisy observation = )

0.5

Enhanced speech = "

0.5

-0.5

05 1 15 2 25 3
x 10*
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