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What is Signal Processing?

» Techniques for analyzing, modifying, and synthesizing signals, such as
sound, images, and others

Input: & — L: — QOutput: Y

Generating output Y by processing
input X using mapping L

See also https://youtu.be/R90ciUoxcJU
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What is Signal Processing?

> Noise reduction
— Input: speech contaminated by noise
— Output: enhanced speech by reducing noise

Noisy speech —— L » Enhanced speech

r A ha  am
e~

Extracting speech signal based on
properties of speech and/or noise
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What is Signal Processing?

> Speech recognition
— Input: Human’s speech
— Output: Spoken text

Speech —— L » Text

N

4 R
Conversion from speech to text is learned

from a large amount of training data
. Y,
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SIGNAL AND LINEAR TIME-INVARIANT SYSTEM
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» Signal is temporal/spatial variations of physical quantities obtained by
sensors or their representation by symbols
— Speech, music, image, video, ultrasonic sonar, radiowave, brainwave, seismic wave,

stock price, etc.
Measurement ]

—

Signal

Information
world

Physical

world

Synthesis
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» Signal used in this class is time-series signal: one-dimensional signal of
amplitude variation changing with time
— Continuous-time signal / Analog signal:
Continuous value of time and amplitude
— Discrete-time signal / Digital signal:
Discrete value of time and quantized value of amplitude

3

Analog signal CE(t)
?M\ / mm) Function
2l W Digital signal CIJ[’R]

] 0 02 04 06 038 1 1.2 1.4 1.6 1.8

¢ mm) Numerical sequence / Vector

/\
[ Signal processing theory founds its basis on wide variety of mathematics ]
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» System: Representation of signal processing stages and input-output
characteristics

x(t)
L L |z[n]]

Converting input to output by mapping £
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Linear time-invariant system

» Focusing on linear time-invariant (LTI) system
> Linearity:
— Superposition principle holds

Llaxln] + Byln|| = aL [z[n]] + BL [yn]

Va, s € C

> Time-invariance / Shift-invariance:
— System is consistent with time change

yln] = Lzn]] = yln —m| = Llzln —ml]], Ym

Input-output characteristics of LTI system can be

decomposed into basic elements for analysis



Impulse response

> Definition of impulse response
— Output of LTI system h[n|when input is delta function d[n|

1 =0
JOER S
0, otherwise
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Impulse response

LTI system characteristics are fully described by impulse response

> When impulse response of LTI system is h[n/, input signal z|nJand output
signal y[n_have the following relationship:

— This operation is called convolution

Output signal of any input signal for LTI system can be computed

iIf its impulse response is known



Impulse response

> Arbitrary signal is written by weighted sum of delta function

z[n]*d[n) = > xm 5[nm]< Z S[m]z[n —m )

m=—00 m=—00

= ...+ z[n — 1]§[1] + z[n]d[0] + z[n + 1]6]—-1] + ...

= xz[n]
g Thus’ Equation above
vl = £l > LE
=L x|m|dn —
e ] > z|m|does not depend on n.
oo z
= Z x|m|L [d[n — m]]
m:o;oo > h
= Z mlhln —
[n] * hln]
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Impulse response

> In continuous case, input signal z(t)and output signal (%) are related by
convolution with impulse response of LTI system h(t)

o0

y(t) = h(t) % (t) = / h(F)a(t — 7)dr

— OO

> Impulse response h(t)is output of LTI system when input is delta function §(¢)

oo, t=0

where (%) = 0. t#0

Not strictly correct representation
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» Convolution is operation to obtain function/sequence from two
functions/sequences

— Continuous system:
o

y(t) = h(t) xx(t) = / h(T)x(t — 7)dr

— 00

— / " h(t - ya(r)dr

— Discrete system:

— Z hin — m|x|m|
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> In discrete case; y[n] = i him]z[n — m]
x|n
] T | ? hl4|x|n — 4]
z[0]z[1]x[2] - - -

Convolution 3K y|n| I ‘ i T
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> In discrete case, >
yln] = > himlz[n —m]
@) M=—00
z[0]z[1]z[2] - --

o
Convolution 3K y[n] T T T T
* o000 1| e
o y[O]y[1]- - - yl4] - - -y[7]  y[9]
Al \ ? yln) =hdlzfn — 4
R[OJA[1] - -+ R[4] - -+ A[7] h[9] -~ -h[9] - - - + h[Tzln — 7]
+ h|9]z[n — 9]
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Convolution in acoustic signal processing

> Transfer characteristics from source (loudspeaker) to receiver (microphone)
can be regarded as LTI system

— Ifimpulse response is measured or predicted in advance, signal at the receiver position
from any source signal can be computed

— Here, impulse response represents characteristics of sound reflections at walls

Source signal Eijf"ji'j? Received signal ‘iﬁ-'ffi.:f.{:

% /Impulse response \

0.006

Source Receiver
0004

0.002

0.000
-0.002

Amplitude

0.0 0.2 0.4 0.6 0.8 10

/ Time (s) j
0

Wall
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FOURIER TRANSFORM
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Fourier series expansion

» Expansion representation by approximating signal by linear combination of
sinusoidal signals

Fourier series expansion
Orthogonal basis expansion of continuous-time periodic signal x(t) with period of T

2(t) = i Ch exp (QWT“)

k=—o0 \ J

' .
Complex sine-wave €'¥ = cosy + jsin g

T/2 9
Cl = l/ x(t) exp (—jﬂ—kt) dt (Fourier coefficient)
T J_ 1 T

Here,
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Fourier series expansion

» Another representation of Fourier series expansion

Fourier series expansion (represented by trigonometric functions)
Orthogonal basis expansion of continuous-time periodic signal x(t) with period of T

> 2kt > , 2kt
x(t) = ag + ,; Q. COS (T) + ,; by sin (—)

T

Here, T/2

1/
an = — x(t)dt
P —T/2 Q
2/T/2 (27rkt>
ap = — x(t)cos [ —— | dt
T _T/2 (t) T

T/ okt
/ x(t) sin <L> dt
—T/2 T

b, =

| o
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> Saw wave

(t—p, (p—2)T<t<(p+3:)T (peZ)

T(t) = X
Q 0, otherwise

\

/

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
Time (s)
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= —i t cos —Qﬂkt
B 21k T )l 1
T
=~ o8 (k)
o0

November 7, 2023

Odd functions are expanded
only by sine function

]
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From Fourier series to Fourier transform

> Fourier series expansion
— Aimed at approximating signal
— Only for periodic signals

By constraint of periodic signals, signal having uncountably many (i.e., continuous)
degrees of freedom is represented by countably many basis functions

— z(t) and.(ck)kez are equivalent information if the series converges

 Just a difference in perspective

0= 3 e (1222)

k=—o0
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From Fourier series to Fourier transform

» Extension of Fourier series expansion to aperiodic signals
— Replacingwith Aw = 27/T, wy = 2nk/T

1 /T/2 o(t)e 2kt atl e 2kt
1 oo [ i 2Tk oo [ 127k
T ) 7 P\ P

o0 T/2
- [/ z(t) exp (—jwit) dt] exp (jwit) Aw

27T‘k:—oo _7/2 |
'v éﬁ’ \
— When T — oo (Aw — 0) \_ Wiy Wet1 5
2(t) = 2i / [ / 2 (1) exp (—jwt) dt] exp (jwt) dw
T J—co /-
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Fourier transform

» Transformation of continuous-time signal into continuous-frequency
complex function

e Fourier transform

X(w) = /O:O x(t) exp (—jwt) dt( .
NS

e Inverse Fourier transform

1 [~ ,
r(t) = oy /_OO X (w) exp (jwt) dw
(t € R)
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Fourier transform

> Notations for Fourier transform and inverse Fourier transform

> Fourier transform pair is denoted as

(1) ¢— X (w)
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Fourier transform

» W :(Angular) frequency
» When X (w) is regarded as a complex function of variable &
— X (w): (Angular) frequency spectrum X (w)]

— | X (w)| : Magnitude spactrum /\A/\/\
— | X (w)|* : Power spectrum

— arg (X (w)): Phase spectrum

> When X (w)is regarded as a complex scalar value at w

— | X (w)]: Magnitude [ X
2 w

— | X (w)[*: Power . )\%wgw»

— arg (X (w)): Phase R
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Discrete Fourier transform

> Definition

e Discrete Fourier transform

X[k] = ]:Z:sc[n] exp( jQﬁ”)

ke{0,1,...,N—1}
» Inverse discrete Fourier transform

z[n] = {:z(jxm exp (j 27}5”)

ned{01,...,N—1}
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Fourier transform for frequency analysis

» From engineering perspective, Fourier transform is frequency analysis of
temporal signal by decomposing it by amplitude and phase of sinewaves

> Inverse Fourier transform is waveform synthesis by generating temporal
signal from amplitude and phase of sinewaves

0.5 ' ' ' ' ' 40

[\]
o

Power (dB)

Amplitude
o

)
S

A
<

0.5 ' ' ' ' ' ' ‘ '
0 01 02 03 04 05 0 2000 4000 6000

Time (s) Frequency (Hz)
Temporal signal Spectrum
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Frequency response of LTI system

LTI system characteristics are fully described by frequency response

» By decomposing LTI system into sinewaves, input-output relationship can be
represented by change of amplitude and phase at each frequency.

» Amplitude change is called gain (or amplitude response), and phase change
is called phase shift (or phase response)

> Gain and phase shift for each frequency is called frequency response
'/\/\/' — _,\/\/
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Transfer function

> Input-output relationship represented by function of frequency is called
transfer function

» Transfer function H(w) at angular frequency wis written by gain G(w)and
phase shift exp (jé(w)) as

H(w) = G(w) exp (j0(w))

> Output of the system when input is complex sinewave exp (jwt) at angular
frequency W

Llexp(jwt)| = H(w) exp(jw?)

> Input signal and output signal are related by their spectrum X (w), Y (w)

November 7, 2023 34



Transfer function

» Representing input-output relationship of LTI system by using Fourier
transform,

y(t) = Llx(t)]

— )5 [ X ewlivas|

1 o
=5/ X(w)L [exp(jwt)] dw >£ lexp(jwt)] = H(w) exp(jw?)
— % _O:O X (w)H (w) exp(jwt)dw
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Transfer function

» Outputsignalis

1 o0
%/_OO Y (w) exp (jwt) dw

y(t) =

» By comparing with

=5 / X (w)H(w) exp (jwt) dw

we can obtain

Output signal of LTI system is multiplication of
input signal and transfer function in the frequency domain




SAMPLING THEOREM
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Sampling

» By discretizing continuous-time signal in the temporal axis, which is called
sampling, discrete-time signal is obtained

> Time interval of sampling T is called sampling period, and its inverse 1/T is
called sampling frequency

> Discrete-time signal z|n|is written as
z[n] =x(nT) = Y  x(t)6(t —nT)

Analog signal

Al

0 02 04 06 08 1 1.2 14 1.6 1.8
t
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Sampling theorem

» Sampling theorem

— When the upper limit of the frequency band of Fourier transform X (w) of
continuous-time signal z(t) is wo = 27 fy, continuous-time signal z(t)is
perfectly reconstructed from discrete-time signal x|n]of sampling frequency
2 fo or above

— Corresponding to the condition that aliasing does not occur, sampling frequency
must satisfy
/s

2
— Half of the sampling frequency is called Nyquist frequency

Jo <
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Sampling theorem

> Irradiating flash lamp to periodic waterdrop from faucet

4,

é

T =0.5s
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Sampling theorem

> Irradiating flash lamp to periodic waterdrop from faucet

4,

é

T =1.0s
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Sampling theorem

> Irradiating flash lamp to periodic waterdrop from faucet

4,

é

1T =15 s

November 7, 2023 42



Sampling theorem

> Irradiating flash lamp to periodic waterdrop from faucet

Direction of waterdrop is indistinctive
when interval of irradiation is large




Sampling theorem

> Suppose sinewave of 1 sec of period (1 Hz of frequency)

1 period of signal

'< >
fs =4 Hz
fs =2 Hz
fs=4/3Hz
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Relationship between continuous and discrete signals

> Relationship between continuous-time and discrete-time signals in the
frequency domain

p(wT) / Z 0(t —nT)exp(—jwt)dt <= ZU(t) = ZE(TLT)

n=—oo

:/ Z d(t — nT) exp(—jwt)dt
—0 n=—00 ) Convolution and multiplication

—%XA( *f[ i o(t —nT)

n=—00 ) Fourier transform of delta sequence

o0

1 27
= %XA * — _Z_ ) (w — —n)
S ) Definition of convolution

/ Xal(€ (w—z%n—f

PR (w—%”n) .
=) XD(Q)Zl Z XA (Q—Q—Wn)

T T T

n=——oo
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Relationship between continuous and discrete signals

> Xp(Q) is shifted sum of Xa(w)atintervals of 27 /T
Frequency band of t Xa(w)

continuous-time signal /\—"\
W

Case of sufficiently Convolution with
small [’ comb-like spectrum

Vs UanUantal

—27)T 21 /T %

Case of large T’ Xp () @m leakage]
D
—-ﬂ“'}{"'—-‘

. L . L . L . L . L4
. L . Ll . Ll . L . L]
. N L ) L ] . N . N

- - - - - -
*» J J *» *» J
* * * * * * * * * *

An )T —2r)T on/T  4n)T %
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Sampling theorem, again

» Sampling theorem

— When the upper limit of the frequency band of Fourier transform X (w) of
continuous-time signal z(t) is wo = 27 fy, continuous-time signal z(t)is
perfectly reconstructed from discrete-time signal x|n]of sampling frequency
2 fo or above

— Corresponding to the condition that aliasing does not occur, sampling frequency
must satisfy
/s

2
— Half of the sampling frequency is called Nyquist frequency

Jo <
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Sampling theorem

> Relationship between continuous-time signal z(¢) with band limitation
(—7/T < w < 7/T)and discrete-time signal x[n] in the time domain

1 o0
z(t) = 2—/ Xa(w) exp(jwt)dw
T J -0
1 /T Band limitation

— Xa(w)exp(jwt)dw
2m —7/T

W Change of variable ) = wT
L XA(Q)exp(Q)dQ>

2T ), T T Because of band limitation
_ b ' TXp () 'Qt d§) Xp(Q) = lXA L
= o T - D exXp ‘]T T T

oo

— % ’ [ Z z[n] exp(—jn)

n=—oo

Q
exp<T>dQ

- 5 st { o [ el (4 n)]ao)
- Y a T
November 7, 2023 n=-—00 T 48




Sampling theorem

> Band-limited continuous-time signal z(¢)is perfectly reconstructed by
convolution of discrete-time signal z[n] and sinc function

(1) i z[n] sinc :w (% _ n)

n——aoo

Tt

x|n] * sinc (T) m) Sinc interpolation

— For perfect reconstruction, discrete-time signal x[n]must be defined in n € Z

— Difficult in practice, but well approximated by truncation because of rapid attenuation of
sinc function
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Reconstruction from discrete-time signal

» Sampling of continuous-time signal

14

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
t

» Reconstruction of continuous-time signal by sinc interpolation

3,
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