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What is sound field estimation?
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Fundamental technology in various audio processing tasks 
and has variety of applications

Estimating sound field inside target region using multiple mics

Microphone



Application #1: Binaural Reproduction
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Binaural reproduction from mic array recordings for VR audio

Recording Reproduction

Ø Unlike binaural synthesis in VR space, binaural reproduction in real environments 
requires spatial audio capturing by using multiple mics

Ø Required to estimate spatial sound in a wide area to achieve a wide listening area, 
e.g., 6DoF reproduction



Application #2: Spatial Active Noise Control

Ø Active noise control (ANC) aims to cancel noise by using loudspeaker signals, but its 
effect is limited to local region

Ø Spatial ANC by estimating spatial sound using multiple mics and synthesizing anti-
spatial sound using multiple loudspeakers 
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Noise suppression over 3D space by loudspeaker signals

Quiet zone



Sound field estimation
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Interior and exterior sound field estimation

Microphone

Target region:

Target region:

Microphone

Interior Exterior

Focusing mainly on estimation in interior free field 



Sound field estimation
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Formulation of sound field estimation problem

Estimate pressure distribution                                     in the time domain or                     
in frequency domain with        ominidirectional mics at

Microphone Target region:



Sound field estimation

Ø Problem to be solved in general interpolation techniques
–                              is represented by model parameters
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Formulation of sound field estimation problem

Loss term

Regularization term

Formulation of sound field estimation problem

Microphone Target region:

Observation

Samples in space/time/freq



Sound field estimation

Ø Problem to be solved in general interpolation techniques
–                              is represented by model parameters
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Formulation of sound field estimation problem

Squared ℓ2-norm penalty

Formulation of sound field estimation problem

Microphone Target region:

Squared error loss



EMBEDDING PHYSICAL PROPERTIES IN 
INTERPOLATION TECHNIQUES

June 6, 2025 12



Embedding physical properties in interpolation techniques
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Purely data-driven approaches may suffer from overfitting

Data
Small data Some data Big data

Lots of physics Some physics No physics

Physics

Physical properties will be useful prior information 
in sound field estimation

[Karniadakis+ 2021]



Embedding physical properties in interpolation techniques

Ø Function to be estimated should satisfy governing PDE

– Wave equation in time domain

– Helmholtz equation in freq domain
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What kind of physical properties can be embedded?

Techniques incorporating constraints on the governing PDEs are introduced



Basis expansion into element solutions

Ø Function     is modeled by basis functions                        and their weights

Ø Basis functions as element solutions of wave/Helmholtz eq [Williams+ 1999, 
Colton&Kress 2019]
– Plane wave expansion (Herglotz wave function)
– Spherical wave function expansion 
– Equivalent source distribution (single-layer potential)
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Linear combination of finite number of basis functions



Basis expansion into element solutions
Ø Plane wave expansion (or Herglotz wave function)
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Basis expansion into element solutions
Ø Spherical wave function expansion

June 6, 2025 17

-0.4 -0.2 0 0.2 0.4
x (m)

-0.4

-0.2

0

0.2

0.4

y (
m

)

-0.1

-0.05

0

0.05

0.1

-0.4 -0.2 0 0.2 0.4
x (m)

-0.4

-0.2

0

0.2

0.4
y (

m
)

-0.1

-0.05

0

0.05

0.1

-0.4 -0.2 0 0.2 0.4
x (m)

-0.4

-0.2

0

0.2

0.4

y (
m

)

-0.1

-0.05

0

0.05

0.1

-0.4 -0.2 0 0.2 0.4
x (m)

-0.4

-0.2

0

0.2

0.4

y (
m

)

-0.1

-0.05

0

0.05

0.1

Expansion center

Spherical Bessel function

Spherical harmonic function



Basis expansion into element solutions
Ø Spherical Bessel function
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Basis expansion into element solutions
Ø Spherical harmonic function
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Associated Legendre function



Basis expansion into element solutions
Ø Equivalent source distribution (or single layer potential)
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Point source
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Basis expansion into element solutions
Ø Linear regression with finite-dimensional basis expansion

– Regularized least squares solution of expansion coefs

– Estimate the function
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Number of basis functions (and expansion center for spherical wave 
function expansion) have to be properly set



Kernel regression with constraint of governing PDE
Ø      is represented by weighted sum of kernel 

function

Ø Kernel function       is a similarity function expressed 
as innter product on some functional space
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can be infinite-dimensional or      can be directly designed              



Kernel regression with constraint of governing PDE
Ø In kernel ridge regression,        is obtained as     

    with Gram matrix defined as

Ø Estimate the function 
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Function space        , which also defines      , must be properly defined



Kernel regression with constraint of governing PDE

Ø Inner product and norm over       are defined by plane wave expansion with 
positive directional weighting       [Ueno+ 2021]
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Kernel function to constrain the solution to satisfy Helmholtz eq

Directional weighting       is designed 
to incorporate prior knowledge of 

sound field directivity



Kernel regression with constraint of governing PDE

Ø Kernel function when       is defined by using von Mises‒Fisher distribution

Ø When no prior information, i.e., uniform weight                     , 
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with

Kernel function to constrain the solution to satisfy Helmholtz eq



Kernel regression with constraint of governing PDE
Ø Experimental results using real data from MeshRIR dataset

– Reconstructing pulse signal from single loudspeaker w/ 18 mic
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Ground Truth
Kernel Interpolation

(Spherical Bessel)
Kernel Interpolation

(Gaussian)

(Black dots indicate mic positions)

[Koyama+ 2021]



Neural Network-based sound field estimation

Ø High representational power
– Solution space in basis expansion and kernel regression is highly constrained
– High adaptability to the target acoustic environment can be expected by using NNs

Ø From snapshot-based (unsupervised) to learning-based (supervised)
– Basically, linear and kernel regressions use only a snapshot observation
– Properties of the target acoustic environment can be learned from training data
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Why NNs in sound field estimation?

Highly accurate estimation can be expected, especially when the 
number of mics is extremely small



Feedforward NNs incorporating governing PDEs
Ø Regression by feedforward NNs

– Target output is discretized as
– NN with input      and output                      is designed with NN params
– NN is trained using a pair of datasets                           to minimize the loss, e.g., 
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Input Output



Feedforward NNs incorporating governing PDEs

Ø Estimating weights of basis expansion using NNs
– Train a NN estimating weights of basis expansion
– Continuous function can be reconstructed by using estimated expansion coefs
– Can be regarded as physics-constrained neural network (PCNN) [Karakonstantis+ 

2023, Lobato+ 2024]

Ø Incorporating (approximate) PDE loss
– Loss function evaluating deviation from governing PDEs: PDE loss
– Because of discrete output values, PDE loss is computed by finite difference or 

interpolation
– In [Shigemi+ 2022], physics-informed convolutional neural network (PICNN) using bi-

cubic spline interpolation is proposed
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How to embed governing PDEs to feedforward NNs?



PINNs based on implicit neural representation
Ø Implicit neural representation [Sitzmann+ 2020]

– NNs are used to implicity represent a continuous function
– NN with input       and output                         is designed with NN params
– NN is trained for approximaging            by using training data
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Input Output



PINNs based on implicit neural representation
Ø Physics-informed neural network (PINN) [Raissi+ 2019]

– Implicit neural representation allows incorporating constraints on     including its 
(partial) derivatives in loss function
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Input Output

Usually computed by 
automatic differentiation



PINNs based on implicit neural representation
Ø Physics-informed neural network (PINN) [Raissi+ 2019]

– Case when estimating function approximately satisfying Helmhotz eq
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Input Output

<latexit sha1_base64="zCg6p69HjmrJB4GrY+2kRUfUKOo="></latexit>Jdata
<latexit sha1_base64="w7F/E1I+85w8BY154v47c18Ny5s="></latexit>JPDE

Loss for evaluating deviation 
from Helmhotlz eq 



PINNs based on implicit neural representation
Ø PINNs for reconstructing RIRs in time domain [Pezzoli+ 2023]

– RIRs measured by array of 100 mics are reconstructed using only 33 channels
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Ground truth

Reconstruction
from 33 ch

PINN NN



Embedding physical properties in interpolation techniques

Ø Basis expansion into element solutions
– Plane wave expansion, spherical wave function expansion, equivalent source 

distribution
– Expansion coefficients are obtained by linear regression

Ø Kernel regression with constraint of governing PDEs
– Infinite dimensional extension of basis expansion
– Kernel function to constrain the solution to satisfy Helmholtz eq

Ø Feedforward NNs incorporating governing PDEs
– Feedforward NNs to estimate discrete target output
– Setting output to expansion coefs or using approximate PDE loss

Ø PINNs based on implicit neural representation
– NNs to implicitly represent continuous function
– PDE loss computed by automatic differentiation
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Four techniques to incorporate governing PDEs



Outline

➢ What is sound field estimation
– Problem setting 

– Applications

➢ Embedding physical properties in interpolation techniques
– Basis expansion into element solutions
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– Neural networks incorporating governing PDE
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CURRENT STUDIES OF SOUND FIELD ESTIMATION BASED ON 
PIML

overview
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PIML techniques
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➢ Classification of current NN techniques based on
– Training strategy

– Strategy for adding physics priors

Training strategy

P
I s

tr
at

eg
y

Constrained

Penalized

Unsupervised*

Supervised

*we will focus on this class



PIML techniques
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Physics prior is introduced as:

➢ Forced to adhere to physical model
– Solutions of wave equation

➢ No deviations of the solution are allowed
– Less flexibility in challenging scenarios

Training strategy

P
I 

st
ra

te
gy

Constrained

Informed

Unsupervised

Supervised



PIML techniques
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Physics prior is introduced as:

➢ Penalization term of the optimization
– Residual on wave/Helmholtz equation 

➢ Small deviations of the solution are allowed
– More flexibility in challenging scenarios

Training strategy

P
I 

st
ra

te
gy

Penalized (a.k.a. informed)

Unsupervised

Supervised

Constrained



PIML techniques
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PIML training approach is similar to standard ML

➢ Supervised: we have access to “ground truth” 
– Direct comparison between NN output and GT

– Training dataset ≠ Test dataset

– Common scenario for regression and classification

➢ Training stage

– Dataset of measurements or simulations

➢ Test stage
– Inference on new data 

Training strategy

P
I 

st
ra

te
gy

Penalized

Unsupervised

Supervised

Constrained



PIML techniques
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PIML training approach is similar to standard ML

➢ Supervised: we have access to “ground truth” 
– Direct comparison between NN output and GT

– Training dataset ≠ Test dataset

– Common scenario for regression and classification

➢ Pros: 

– Exploit available data 

– Fast inference

➢ Cons:

– Generalization is difficult

Training strategy

P
I 

st
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Penalized

Unsupervised

Supervised

Constrained



PIML techniques
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PIML training approach is different from standard ML

➢ Standard meaning for unsupervised in ML: 
– No access to “ground truth” 

– Common scenario for clustering

➢ Unsupervised
– no training dataset, “per-element” training

– Same conditions for training and testing

– ”overfit” the model 

➢ Training stage
– Only available measurements are used

➢ Test stage
– Model applied on the same data

Training strategy

P
I 

st
ra

te
gy

Penalized

Unsupervised

Supervised

Constrained



PIML techniques
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PIML training approach is different from standard ML

➢ Unsupervised
– no training dataset, “per-element” training

– Same conditions for training and testing

– ”overfit” the model 

➢ Pros

– No need for big training dataset

– No “generalization” issues

➢ Cons

– Does not exploit other available datasets

– Needs re-training for new scenarios Training strategy

P
I 

st
ra

te
gy

Penalized

Unsupervised

Supervised

Constrained



PIML techniques
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Training strategy

P
I 

st
ra

te
gy

Penalized

Unsupervised

Supervised

Shigemi+ 2022

Karakonstatis+ 2023

Olivieri+ 2024

Ribeiro+ 2024

Constrained

Paper Supervised/Unsup
ervised

Estimator Domain Physical 
Property

Shigemi+ 2022 Supervised Nonlinear Frequency Penalized

Karakonstatis+ 
2023

Supervised Linear Frequency Constrained

Olivieri+ 2024 Unsupervised Nonlinear Time Penalized

Ribeiro+ 2024 Unsupervised Linear Frequency Constrained



Training strategy

P
I 

st
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gy

Penalized

Unsupervised

Supervised

PIML techniques
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Paper Supervised/Unsup
ervised

Estimator Domain Physical 
Property

Shigemi+ 2022 Supervised Nonlinear Frequency Penalized

Karakonstatis+ 
2023

Supervised Linear Frequency Constrained

Olivieri+ 2024 Unsupervised Nonlinear Time Penalized

Ribeiro+ 2024 Unsupervised Linear Frequency Constrained

Shigemi+ 2022

Karakonstatis+ 2023

Olivieri+ 2024

Ribeiro+ 2024

Constrained



Ribeiro+ 2024

“Sound Field Estimation Based on Physics-Constrained Kernel Interpolation Adapted to 
Environment”

Juliano G. C. Ribeiro, Shoichi Koyama, Ryosuke Horiuchi, and Hiroshi Saruwatari

IEEE/ACM Trans. Audio, Speech, Lang. Process.

➢ KRR in combination with NN for carefully model the sound field

➢ Frequency-domain model, unsupervised, constrained
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Neural kernel for sound field estimation

➢ Kernel function with constrainst of Helmholtz eq is optimized to acoustic environment 
with the aid of neural networks [Ribeiro+ 2024]

– Superposition of two kernel functions

– Directed kernel: direct source and early reflections

– Residual kernel: late reverberations and residual components
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Reproducing kernel function adapted to acoustic environment using neural 
networks

Directed kernel Residual kernel



Neural kernel for sound field estimation

➢ Directed kernel

– Directional weighting with weighted sum of (sparse) von Mises—Fisher distribution [Horiuchi+ 2021]
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Reproducing kernel function adapted to acoustic environment using neural 
networks

Sparsity constraint

Normalization constant



Neural kernel for sound field estimation

➢ Residual kernel

– Directional weighting with implicit neural representation
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Reproducing kernel function adapted to acoustic environment using neural 
networks

Computed by numerical integration

: Implicit neural representation



Neural kernel for sound field estimation

➢ Again, (positive-definite) kernel function is the sum of directed and residual kernels

– Hyperparameters 𝛃, 𝜸, 𝜽 are jointly optimized by a steepest-descent-based algorithm

– The method is physics-constrained

– Estimation process is still linear operation in freq domain based on kernel ridge regression
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Reproducing kernel function adapted to acoustic environment using neural 
networks

Directed kernel Residual kernel



Neural kernel for sound field estimation

➢ Numerical experiment: T60: 400 ms, # mics: 41, spherical shell array
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Paper Supervised/Unsup
ervised

Estimator Domain Physical 
Property

Shigemi+ 2022 Supervised Nonlinear Frequency Penalized

Karakonstatis+ 
2023

Supervised Linear Frequency Constrained

Olivieri+ 2024 Unsupervised Nonlinear Time Penalized

Ribeiro+ 2024 Unsupervised Linear Frequency Constrained

Training strategy

P
I 

st
ra

te
gy

Penalized

Unsupervised

Supervised

PIML techniques
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Constrained

Shigemi+ 2022

Karakonstatis+ 2023

Olivieri+ 2024

Ribeiro+ 2024



Olivieri+ 2024

“Physics-informed neural network for volumetric sound field reconstruction of speech 
signals”

Marco Olivieri, Xenofon Karakonstantis, Mirco Pezzoli, Fabio Antonacci, Augusto Sarti and Efren Fernandez-Grande

EURASIP J. Audio, Speech, Music Process. 

➢ Physics-informed neural network for sound field reconstruction

➢ Time domain model, unsupervised, penalized
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PINN for sound field estimation

➢ Implicit continuous differentiable representation of function 𝑓 (a.k.a. Neural Field)

➢ Proved to be effective for different classes of signals (images, videos, point clouds etc.)
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Implicit Neural Representation (INR)



PINN for sound field estimation

INR is used to implicitly represent the continuous function 𝑓

➢ Input is the domain 𝒙 of 𝑓 sampled in 𝒙𝑖 , 𝑦𝑖 𝑖=1
𝐼

➢ Output are the value of 𝑓 in 𝒙𝑖 , 𝑦𝑖 𝑖=1
𝐼

➢ Typically, small MLPs are used 
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Implicit Neural Representation (INR)



PINN for sound field estimation

➢ MLP structure with sinusoidal activations
𝑔 𝒙; 𝜽 = 𝜙𝐿 ∘ 𝜙𝐿−1 ∘ ⋯∘ 𝜙1 𝒙

➢ Sine layer

𝜙𝑖 𝒙𝑖 = sin 𝜔0𝒙𝑖
𝑇𝜽𝑖 + 𝒃𝑖
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𝑢 𝒓,𝜔

Sinusoidal representation networks (SIREN) [Sitzmann+ 2020]

Input

Learnable parameters

Derivatives of SIREN are still SIREN 



PINN for sound field estimation

➢ Being INR, SIREN allows for imposing constraints on its derivatives
– Derivates are implemented using automatic differentiation

➢ Penalizing reconstruction using the residual of wave equation

𝒥PDE = ෍

𝑛=1

𝑁

(∇𝑟
2+

1

c2
𝜕2

𝜕𝑡2
)𝑔 𝒓𝒏, 𝒕; 𝜽𝑁𝑁

2
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Physics-informed SIREN (PI-SIREN)

Evaluation point 𝒓𝑛 can be different from the 
observation ones𝑥

𝑦

𝜙1

𝑢

𝜙2

𝒥 𝑢 = ൞

𝜕𝑢

𝜕𝑥
+
𝜕𝑢

𝜕𝑦
⋯

𝑢 − ො𝑢 2

𝑤1

𝑤2

𝑤3

𝑤4

𝑤6

𝑤5
𝜕𝒥/𝜕𝑢

𝜕𝒥/𝜕𝑤5

𝜕𝒥/𝜕𝑤4

𝜕𝒥/𝜕𝑤6

𝜕𝒥/𝜕𝑤1

𝜕𝒥/𝜕𝑤2

𝜕𝒥/𝜕𝑤3

PDE Loss

Data loss



PINN for sound field estimation

➢ Evaluation on speech sound field using real measurements from MeshRIR [Koyama+ 
2021]
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[Olivieri+ 2024]



PINN for sound field estimation

PINNs are at the base of different sound field estimation works

➢ RIR Reconstruction using PI-SIREN
– [Karakonstantis+ 2023, Pezzoli+ 2023, Karakonstantis+ 2024]

➢ Spherical microphones 
– [Chen+ 2023, Ma+ 2024]

➢ Nearfield acoustic holography
– [Olivieri+ 2021]

➢ Sound field simulation
– [Borrel-Jensen+ 2024]
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First works using PI-SIREN

Variation in the architectures, frequency domain

Physics loss with Kirchhoff-Helmholtz integral

Solving forward problem using DeepONet



OUTLOOK

overview
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PIML Outlook

➢ Bridging ML with physical prior proved to be a winning approach

June 10, 2025 29

Sound field estimation took large advantage of PIML 

Machine learning Domain knowledge

𝑢 𝒓,𝜔

However, there are still major 
problems to be addressed



PIML Outlook

We identified three main open challenges:
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PIML sound field estimation: open challenges

Preparation of training data

Mismatch between training and test 
data

Neural network architecture design



PIML Outlook

Preparation of training data

➢ Supervised methods potentially extract more information from data

However, 

➢ High spatiotemporal resolution is required

➢ Large acoustic variations in different environments
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PIML sound field estimation: open challenges

Simulations could be used but they have high computational cost



PIML Outlook

Mismatch between training and test data

➢ Many parameters influence the acoustics

– Source-receiver location

– Environment geometry

➢ Deviation between simulations and real world

– Wave phenomena 

– Nonlinearities

– Noise 
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PIML sound field estimation: open challenges

Cover extended ranges is unpractical



PIML Outlook

Neural network architecture design

➢ No clear methodology for architecture design 

➢ Unsupervised methods mainly MLPs
– Number of layers

– Activations 

➢ Supervised methods

– CNN

– Generative methods

➢ Application dependent models
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PIML sound field estimation: open challenges

SIREN emerged as one of the main models



PIML Outlook

➢ Application of PIML for interior/mixed sound fields

➢ Dependency on number and distribution of mics
– Cover large areas with smallest number of microphones

– Optimal placement is unclear 

➢ Computational cost
– Affects several applications e.g., noise control or HRTF interpolation

– NN-based are mainly offline
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PIML sound field estimation: further observations

Some techniques could be applied here



Conclusions
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Physics-informed Machine Learning for Sound Field Estimation:
Fundamentals, state of the art and challenges

Problem: estimation of spatial 
sound

Solution: Inclusion of physics in 
machine learning methods

State of the art: methods and 
outlook
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